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1 Overview

1.1. Reminder. Let A ∈ CRng,X ∈ Sch we have the following abelian groups.

K0(A) ∶=K0(ProjA) ≃K0(PerfA)

K0(X) ∶=K0(Vect(X))

We also have their enhancement as E∞-spaces.

K(A) ∶= group completion of Proj≃A

Knaive(X) ∶=K(Vect(X)), Quillen K-theory of Vector Bundle

K(X) ∶=K(Perf(X)), Waldhausen K-theory of perfect complexes

1.2. If X has resolution property, then
K(X) ≃Knaive(X)

K(Spec(A)) ≃K(A)

Theorem 1.3. (Thomason). Algebraic K-theory satisfies descent. That is: X ↦K(X) is a ”sheaf” in some
sense.

1.4. Warning. The presheaf X ↦K0(X) of sets/abelian groups is not a sheaf.

1.5. Reminder. (Sheaf of sets). X a topological space.

• Let U(X) be poset (viewed as a category) of open subsets of X ordered by inclusion.

• A presheaf on X is a presheaf on U(X).

• A presheaf F ∶ U(X)op → Set is a sheaf if for all open cover X = ⋃iUi, the diagram

F (X) ∏i F (Ui) ∏i,j(Ui ∩Uj)

is a limit diagram.

Example 1.6. X ∈ Sch, E
πÐ→X a vector bundle. Γ(−,E) the sheaf of sections of E.

Γ(U,E) ∶= {s ∶ U → E ∶ s is a section }, U ↪X open
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Example 1.7.
X ↦ Vect(X)/ ≃= { iso. classes of vect. bundles}

is not a sheaf.

Problem: vector bundles have nontrivial automorphisms.

Solution: X ↦ Vect≃ (groupoid) is a sheaf in the 2-categorical sense. This means

Vect(X)≃ ∏iVect(Ui)≃ ∏i,j Vect(Ui ∩Uj)≃ ∏i,j,k Vect(Ui ∩Uj ∩Uk)≃

The third arrows is the cocycle condition.

Example 1.8. X ↦ Perf(X)≃.

Problem. Now we have derived/higher automorphisms. This comes from the fact that we have Ext groups.

Solution. Consider the ∞-groupoid of perfect complexes.

grpd 2 grpd ⋯ ∞− grpd ≃ Spc

Theorem 1.9. X ↦ Perf(X)≃ is a sheaf of ∞− grpd. That is, we have a cosimplicial diagram indexed on ∆.

Perf(X)≃ ∏iPerf(Ui)≃ ∏i,j Perf(Ui ∩Uj)≃ ∏i,j,k Perf(Ui ∩Uj ∩Uk)≃ ⋯

Theorem 1.10. (Thomason). X ↦K(X) is a sheaf of ∞− grpd (over qcqs schemes).

Corollary 1.11. (Mayer-Vietoris). X = U ∪ V , Zariski cover.

⋯ Kn(X) Kn(U)⊕Kn(V ) Kn(U ∩ V ) Kn−1(X) ⋯∂ ∂

Remark 1.12. Also work for algebraic spaces - we have Nisnevich coverings in this case. This is referred to
as Scallop decompositions in Lurie.

2 ∞-categories

[Cis20], [Lura, 1].

Definition 2.1. (Simplicial sets). We have the following category.

∆ ∶= {[n] ∶ n ∈ N} [n] = {0,1, . . . , n}

Hom∆([m], [n]) = order-preserving maps

A simplicial set is a functor X ∶ ∆op → Set. This is equivalent to the data

(Xn)n∈N

∀α ∶ [m]→ [n] in ∆

α∗ ∶Xn →Xm functorially .
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2.2. Notation. n ∈ N. 0 ≤ i ≤ n.

• δin ∶ [n − 1]↪ [n]. The injective map which ”skips” i.

• σin ∶ [n + 1]→ [n]. The surjective map which ”doubles” i.

2.3. If X ∈ Set∆ (the category of simplicial sets). We have induced maps

• face maps. din ∶Xn →Xn−1 induced by δin.

• degenracy maps. sin ∶Xn →Xn+1 induced by σin.

Example 2.4. If X is a set, c(X) ∈ Set∆ is constant simplicial set. The functor

Set
cÐ→ Set∆

is fully faithful.

Example 2.5. The standard simplex. ∆n ∈ Set∆. The simplicial set represented by [n].

∆n
i ∶= Hom∆([i], [n])

Example 2.6. ∂∆n.
∂k∆n ⊂ ∆n image of ∆n−1 →∆n, kth face of ∆n

∂∆n ∶=⋃
k

∂k∆n boundary of ∆n

Example 2.7. Λnk ⊂ ∆n is union of ∂i∆n, j /= k. (∂∆n minus kth face) horns of ∆n.

2.1 Categoires as simplicial sets

2.8. C a category. N(C) ∈ Set∆, nerve of C.

N(C)n ∶= FunCat([n],C) = {c0 → ⋯→ cn strings of morphisms }

• N(C)0=objects of C.

• N(C)1=morphisms of C.

• N(C)2=diagrams C0 → C1 → c2 in C.

• ⋯

• N(C) has all info about C.

2.9. C ↦ N(C) defines a fully faithful functor

N ∶ Cat→ Set∆

Moreover there is a left adjoint τ ∶ Set∆ → Cat.

2.10. Let X ∈ Set∆.

• objects of X: 0-simplices. ∆0 →X

• morphisms of X: 1- simplices. ∆1 →X.
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• source/target of f ∈X1.

X1 X0

d01

d11

s(f) ∶= d1
1(f), t(f) = d0

1(f)

• identity of x ∈X0. s0
0 ∶X0 →X1, x↦ idx.

Definition 2.11. X ∈ Set∆ is a compsable par in X, is a map

Λ2
1 →X

a composition of a composable pair is a lift

Λ2
1 X

∆2

σ

σ̃

2.12. X ∈ Set∆ is in the essential image of N ∶ Cat→ Set∆ iff

Hom(∆n,X)→ Hom(Λnk ,X)

is bijective for all n ≥ 2, 0 < k < n. In particular composition exists and is unique.

2.2 Groupoids and Kan complexes

Remark 2.13. C is a groupoid iff moprhisms in C are invertible iff N(C) ∈ Set∆ satifies the following:

Hom(∆n,N(C)) ≃Ð→ Hom(Λnk)

for all n ≥ 2, 0 ≤ k ≤ n. The corner cases allow us to construct inverses:

1

0 2

Definition 2.14. (Kan complex). X ∈ Set∆ is a Kan complex iff

Hom(∆n,X) resÐ→ Hom(Λnk ,X)

is surjective ∀0 ≤ k ≤ n. ”Kan complex= generalized groupoids where compositions and inverses exist but not
uniquely”.

Theorem 2.15. (Milnor). There is an equivalence

{ homotopy cat. of CW cplx. } ≃Ð→ { homotopy cat. of Kan cplx. }

which is given by
X ↦ Sing(X)● ∈ Set∆

Sing(X)n ∶= {∆n
Top →X continuous maps }

Composition in a Kan complex corresponds to composition of paths in a space.
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2.3 ∞-categories as weak Kan complex

2.16. groupoid :: category.
Kan cplx:: ???

Definition 2.17. (Boardman-Vogt) is a weak Kan complex a.k.a quasi-category iff

Hom(∆n,X) resÐ→ Hom(Λnk ,X)

is surjective for all n ≥ 2, 0 < k < n.

2.18. Construction. X be a weak Kan complex. f, g ∶ x→ y. A homotopy f ≃ g is a 2-simplex ∆2 σÐ→X.

y

x y

idf

g

The homotopy category hX has obbjects 0-simplices. Morphisms homotopy classes of x to y.

Definition 2.19. X wkc. f ∶X → y is an isomoprhism iff following equivalent holds

• f invertible.

• f isomoprhism hX.

X is an ∞− grpd iff every moprhism in X is an iso.

Remark 2.20. There is unit map X → NτX.

Theorem 2.21. (Joyal). X wkc. Tfae

• X is a Kan complex.

• X is an ∞− grpd.

Example 2.22. (Cat. theory of wkc).

• Fun(X,Y ) = Hom(X,Y ) internal hom of Set∆.

• MapX(s, y). X is a wkc. x, y ∈X0, we can construct an ∞− grpd of maps

MapX(x, y) Fun(∆1,X)

∆0 X ×X
⌟ (s,t)

(x,y)

• adjunctions.

Definition 2.23. An ∞-category(platonic concept) is a weak Kan complex (shadow).
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2.4 ∞-category of Kan complexes

2.24. Construction. Kan (large) simplicial sets. (/= N(Cat .of Kan. complexes).

• Kan0 = {small Kan complexes}

• Kan1 = {maps of Kan complexes}.

• Kan2 = {(X,Y,Z, f, g, h, σ) ∶ f ∶X → Y, g ∶ Y → Z,h ∶X → Z,σ ∈ Fun(X,Z), d1
0σ = g ○ f, d2

0 = h}

• ⋯

• Kann = tuples of Kan complexes X0 →Xn,Xi →Xj ”compatible up to coherent homotopy”.

Definition 2.25. There is a fully faithful functor of ∞-categories

Set↪ Kan

An object X ∈ Kan is in the ess. image iff X is homotopy equivlaent to a constnat simplicial set iff πi(X) ≃ 0
for all i > 0.

3 Animated modules

[ARV10], [ČS19, 5], [Lura, 5.5.8].

3.1 Algebraic categories

Definition 3.1. C category. C is algebraic if there exists an essentially small full subcategory FC ⊂ C,
admitting finite coproducts, which extends to an equivalence

Funπ(F opC ,Set)→ C

where lhs denotes product preserving functors.

Example 3.2. The category Set is algebraic, with FC = Fin. The category of finite sets.

Set ≃ Funπ(Finop,Set)

The forward map is the Yoneda embedding.

X ↦ (Y ↦ Hom(Y,X))

Conversely, given F in rhs, we have the data of

• F0 ≃ {∗}

• Fn ∶= F ({1, . . . , n}) ≃ Fn1 =∶ (F{1})n for all n.

• {1, . . . , n}→ {1, . . . ,m} induces a map

Xm ≃ Fm → Fn ≃Xn

In other words, all the data is encoded by X = F1 ∈ Set. Hence, the inverse map is given by

F ↦ F1
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Example 3.3. Ab is algebraic. FAb = {f.g. free ab groups} ⊂ Ab. FAb can be identified with the category

• Objects are n ∈ N.

• Morphisms are
HomFAb

(m,n) = HomAb(Z⊕m,Z⊕n) ≃ Matn×m(Z)

• composition is identified with matrix multiplication.

We have
Ab ≃ Funπ(F op

Ab,Set)
Object of rhs is identified with data of

• F0, F1, . . . ∈ Set.

• F0 ≃ {∗}, Fn ≃ F ×n
n .

• φ ∈ Matn×m(Z), Fφ ∶ Fm → Fn.

This implies we can define the underlying set as G = F1 ∈ Set.

• Note the operation maps G×n → G corresponds to n × 1 matrices.

⎡⎢⎢⎢⎢⎢⎣

a1

⋮
an

⎤⎥⎥⎥⎥⎥⎦
corresponds with operation of forming a linear combination with coefficients ai.

(x1, . . . , xn)↦∑ai ⋅ xi

• addition

[1
1
]⇔ (x0, x1)↦ x1 + x2

• zero. [] empty (0 × 1-matrix yields {∗} 0Ð→ G.

• additive inverse. [−1] ⇔ G→ G

Remark 3.4. There is a canonical choice of FC , namely the full subcategory of compact projective objects.

• X ∈ C is compact iff HomC(X,−) preserves filtered colimits. (thought of as poset)

• X ∈ C is projective iff preservers reflexive coequalizers. (thought of as equivalence relation).

Example 3.5. In Set, X ∈ Set is cpt. proj. iff X is finite.
In Ab, X ∈ Ab is cpt. proj. iff X is f.g. free.

3.6. Moreover, if C is algebraic then Funπ(F opC ,Set) ≃ C is the free completion of FC by filtered colimits and
reflexive coequalizers.

Free completion. For every category D with filtered colimits + reflexive coequalizers, there is an equivalence
given by restriction

Fun′(C,D) ≃Ð→ Fun(FC ,D)
where the lhs consists of functors F ∶ C → D preserving filtered colimits+ reflexive coequalizers.
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3.7. Reminder. A reflixve pair inC is a diagram

X y

f

g
s

such that fs = gs.
3.8. Reflexive coequalizers are colimits induced by reflexive pairs. These generalize quotients by equivalence
relations. For example

R ⊂X ×X
yields a reflexive pair

R X

Definition 3.9. C an ∞-category. X ∶ ∆op → C a simplicial diagram in C. The colimit of X is denoted

∣X●∣ ∶= limÐ→
[n]∈∆op

Xn

⋯ X1 X0 ∣X●∣
and is called the geometric realization of X. We should think of these as higher cat. version of equivalence
relations.

Definition 3.10. C an algebraic category. An animation of C is an ∞-cat Anim(C) equipped with a f.f
functor FC ↪ Anim(C) such that for all D ∞-cat (admitting fil. colim + geo. realization. )

Fun′(Anim(C),D) ≃Ð→ Fun(FC ,D)

is an equivalence. The lhs consists of F ∶ Anim(C)→ D preserving filt. colimit + geo. realizations.

• The ∞-category of anime is an animation of the category of sets. We denote it by Anim.

Theorem 3.11. (Quillen, Lurie).

• The f.f. functor Fin↪ Kan exhibits the ∞-cat Kan as an ∞-category of anime.

• C an algebraic category. Then the Yoneda embedding

C Fun(F op
C
,Anim)

Funπ(F opC ,Anim)

induces a factorization as depicted, and exhibits the target as an animation of C. i.e. Fun(F op
C
,Anim)

is a model of animation for any algebraic category C. This is proven in [Lura, 5.5.8].

Definition 3.12. Recall. Set↪ Kan ≃ Anim. An anima. X ∈ Anim is discrete if it is isoo. to an object in
the essential image.

If C is an algebraic category, an object X ∈ Anim(C) is discrete if

X ∶ F op
C
→ Anim

factors through Set↪ Anim. iff the underlying anima of X is discrete. We denote this category

Anim♡ ⊂ Anim
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3.13. Claim.

1. The assignment
(F op
C
→)Set↦ (F op

C
→ Set↪ Anim)

defines a ff functor
C ↪ Anim(C)

with ess. image Anim(C)♡.

2. The functor C ↪ Anim(C) admits left adjoint

π0 ∶ Anim(C)→ C

given by composition with
π0 ∶ Anim→ Set

the connected component functor.

3.14. Construction. (Underlying anima). Assume FC is generated under finite coproducts by one object, 1.
X ∈ Anim(C).

X○ ∶=X(1) ∈ Anim, X(1) = MapAnim(C)(1,X)

3.2 Animated modules

3.15. A a comm. ring. FA ∶= {A⊕n ∶ n ∈ N} ⊂ ModA consists of f.g. free A-module.

Definition 3.16. An animated A-module is a product preserving functor

M ∶ (FA)op → Anim

Remark 3.17. Harry. There is an equivalence of categories between the animated A-modules defined above
and those with domain the compact projective objects of ModA.

3.18. Notation. D(A)≥0 ∶= Anim(ModA). This will be shown to be equivalent to the usual ∞-category of
connective chain complex.

3.19. M ∈ D(A)≥0 consists of

• Mn ∈ Anim for all N ∈ N.

• Mm →Mn for all ϕ ∶ Matm×n(A).

• ϕ ∈ Matm×n(A), ψ ∈ Matl×m(A) a homotopy between (Mψϕ ∶Ml →Mn) and (Ml

MψÐÐ→Mn

MϕÐÐ→Mn)

• + a homotopy coherent system of compatibilities between homotopies.

subject to the condition

Mn
≃Ð→M×n

for all n and
M0 ≃ ∗

The data of relevance

• M○ =M1 ∈ Anim.
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• Operations
(M○)×n →M○

corresponds to ϕ ∈ Matn×1(A).

• action of A on M○

A→ End(M○)

A ≃ Mat1×1(A) = HomFA(1,1)
MÐ→ HomAnim(M1,M1) ≃ End(M○)

• Assoc + commutativity up to coherent homotopy. For all x, y, z ∈M (⇔ x, y, z ∶ ∗→M0). This follows
from the diagram

M○ ×M○ ×M○ M○ ×M○

M○ ×M○ M○

id×a

a×id

a

3.3 Derived functors

3.20. The idea is to resolve by simplicial diagrams.

3.21. Construction. (Left derived functors). F ∶ C → D functor between algebraic categories. If F preserves
filt. colimits + refl coeq’s, then this induces

LF ∶ Anim(C)→ Anim(D)

unique functor such that

• LF preserves filt colimit + geo. realization.

•
FC C D Anim(D)

Anim(C)

F

∃!LF

• For all X ∈ Anim(C), π0LF (X) ≃ F (π0X) ∈ C.

• If F preserves fin. coproduct then LF does too.

Definition 3.22. LF is the left derived functor of F .

3.23. In the classcal theory left derived functors don’t compose well.

Proposition 3.24. F ∶ C → D,G ∶ D → E functors between alg. cats. preserving filt. colimit+ reflex. coeq.
Assume one of the following holds

1. F sends FC → FD ⊂ D. (More generally sends FC to filt. colimits of objects in FD. )

2. LG ∶ Anim(D)→ Anim(E) preserves discrete objects. i.e. a diagram

D E

Anim(D) Anim(E)

G

LG

More generally for all X ∈ FC , LG(F (X)) is discrete in Anim(D).
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Then, there is a canonical equivalence

LG ○LF ≃ L(G ○ F ) ∶ Anim(C)→ Anim(E)

Example 3.25. ϕ ∶ A→ B ring homomoprhism

ϕ∗ ∶ ModA →ModB , M ↦M ⊗A B

This implies the existence of the functor

Lϕ∗ ∶ D(A)≥0 → D(B)≥0,

FA FB

D(A)≥0 D(B)≥0

−⊗AB

Lϕ∗

which preservers colimits. Further
π0Lϕ∗M ≃ ϕ∗π0M

next time we will identify this functor as
− ⊗L

A B = Lϕ∗

4 Nonconnective animated modules

[Lurb, 1], [Lurc, c].

4.1 Suspensions and loops spaces

Definition 4.1. C an ∞-category with terminal object pt ∈ C, MapC(X,pt) is a contractible anima. f ∶X → Y
a morphism in C.

• cofib(f)=cofiber of f is the pushout

X Y

pt cofib(f)

f

⌜

• fiby(f)=fiber of f at any ”point” y ∶ pt→ Y , is the pullback square

fiby(f) X

pt Y

⌟ f

y

Example 4.2. Let C be an ordinary category (viewed as an ∞-category), then

cofib(f) ≃ coker(f)

fiby(f) ≃ ker(f)

Example 4.3. C an ∞-cat. X ∈ C, object. Then
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• The suspension is
ΣX ≃ cofib(X → pt)

• The loop space Ωx(X)
fibx(pt

xÐ→X)

In otherwords we have the cocartesian and cartesian squares respectively.

X pt

pt ΣX

⌜
Ωx(X) pt

pt X

⌟ x

x

Remark 4.4. In ordinary category ΣX = pt,Ωx(X) = pt for all x,x ∶ pt→X.

Example 4.5. In the Kan ≃ Anim

Σ∅ ≃ S0, Sn+1 ≃ ΣSn, ∀n ≥ 0

∅ pt

pt pt⊔pt

⌜

Remark 4.6. Point of a loop space Ωx(X) is equivalent to

pt

Ωx(X) pt

pt X

⌟ x

x

corresponding to a commutative square

pt pt

pt X

σ2

σ1

⌟ x

x

which requires specifying a further data of homotopy. i.e. have to specify 2 simplicies σ1, σ2 up to which the
triangle commute

∆1 ×∆1 → C
This data is equivalent

(pt
xÐ→X) ≃ (pt

xÐ→X) (σ1)

(pt
xÐ→X) ≃ (pt

xÐ→X) (σ1)
which is equivalent to loop in X based at x ∈X.

Remark 4.7. Harry. Can also think of loop space as X(x,x) the endomorphism space of x, which makes
sense even if X were an ∞-cat.
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4.2 Infinite loop space

Definition 4.8. 1. A pointed anime pair (X,x0) X ∈ Anim x0 ∶ pt→X (i.e. pointed Kan complex).

2. Anim∗ = {∞-cat of pointed anime}.

3. (X,x0) is n-connective if πi(X,x0) ≃ ∗ for all i < n.

Example 4.9. Every X ∈ Anim∗ is 0-connective. X ∈ Anim∗ is 1-connective iff X is connected iff π0X ≃ 0.

Theorem 4.10. (1-fold loop spaces).

• A 1-fold loop space is a pair (X0,X1) of pointed anime together with an isomoprhism,

X0 ≃ Ω(X1)

• X0 is the underlying anima, and X1 is the delooping of X0.

• (X0,X1) is connective if Xi is i-connective for all i, iff, X1 is 1-connective.

Claim.

1. For every X ∈ Anim∗, ΩX admits an E1-group structure. In particular the functor

{1-fold loop spaces}→ Anim∗

factors through {E1-groups} forgetÐÐÐ→ Anim∗.

2. Restricted to the full subcategory of connective loop space, this induces an equivalence of categories

{connec. 1-fold loops spc} ≃Ð→ {E1groups}

This implies any E1-group on X ∈ Anim∗ gives rise to a unique delooping BX, BX is 1-connective
pointed anime ΩBX ≃X.

Remark 4.11.
{1-fold loop spaces} Anim∗

{connec. 1-fold loops spc} ptd. connected anima

(X0,X1) X1

(Ω(X),X) X

≃

≃

⊂ ⊂

Definition 4.12. A spectrum X is a sequence of pointed anime X = (X0,X1, . . .) together with isomoprhisms
Xn ≃ Ωn+1 for all n ≥ 0.

• X is an infinite delooping of X0.

Definition 4.13. A spectrum X is connective if Xn is n-connective pointed anima. (for all n ≥ 0.)
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1. Spt =∞-cat of spectra.

2. Spt≥0 full subccategory of connective spectra.

3.

Spt ≃ lim←Ð(⋯ ΩÐ→ Anim∗

ΩÐ→ Anim∗)

4.

Spt≥0 ≃ lim←Ð(⋯ ΩÐ→ (Anim∗)≥1
ΩÐ→ (Anim∗)≥0)

Remark 4.14. Projections

Spt
Ω∞−n

ÐÐÐ→ Anim∗

(X0,X1, . . .)↦ (Xn)
Theorem 4.15. (infinite loop space machine). Boardman-Vogt, Segal, Peter may, Lurie.

1. X ∈ Spt, Ω∞X ∈ Anim∗, admits an E∞ − grp structure.

Ω∞ ∶ Spt→ E∞ − grp

2. When restricted to Spt≥0, we have an equivalence

Spt≥0 ↪ Spt
Ω∞

ÐÐ→ E∞ − grp

4.3 Stable ∞-categories

Definition 4.16. C ∞-category is stable if

• admits finite limits and a zero object (terminal + initial).

• Ω ∶ C → C is an equivalence.
ΣΩ ≃ id, ΩΣ ≃ id

These behave like shift functors in a triangulated category.

Theorem 4.17. Spt is a stable ∞-category.

Proof. (Sketch). Looking at

Spt ⋯ Anim∗ Anim∗ Anim∗

Spt ⋯ Anim∗ Anim∗ Anim∗

Ω

Ω Ω

Ω

Ω

Ω Ω

Ω Ω Ω

The inverse is given by a collection of compatible map

Spt Spt

Anim∗

θn

θ

Ω∞−n

1

Ω ○ θn ≃ θn+1, θn ∶= Ω∞−n,Ω ○Ω∞−n−1 ≃ Ω∞−n

This implies θ ≃ Σ.
1Check the maps here
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Proposition 4.18. C an ∞-cat, tfae.

• C is stable.

• C admits finite colimits + zero objt, Σ ∶ C → C is equivalence.

• C admits finite colimits + finite limits + zero object and any commutative square is cartesian iff it is
cocartesian.

Definition 4.19. An exact triangle in a stable category C is a co/cartesian diagram

X Y

0 Z

0 is a zero object. This is denoted

X
fÐ→ Y

gÐ→ Z

Warning. Have to specify a null homotopy g ○ f ≃ 0.

Remark 4.20. The homotopy category h(C) is triangulated.

• h(C is additive.

• π0 MapC(X,Y ) are abelian groups. Hence

π0 MapC(X,Y ) ≃ Ω MapC(X,Y ) ≃ π1 MapC(X,Y )

Similarly
π0 MapC(Σ2X,Y ) ≃ π2(MapC(X,Y )

is an abelian group. But we have X ≃ Σ2Ω2X since C is stable.

• [n] ∶= Σn,Ωn if n > 0, and < 0 respectively.

• exact triangles coming from C → hC.

4.4 Animations of additive categories

4.21. C is algebraic category. If C is additive, then

C ≃ Funπ(F opC ,Ab)

Idea. X ∈ C iff X ∶ FC → Set automatically takes value in Ab.

4.22. In particular X ∈ C if it is reprentable, In general, X is built out of filt. colimits and reflexive
coequalizers of representable objects.

Proposition 4.23. C additive algebraic ategory.

Anim(C) ≃ Funπ(F opC ,Spt≥0)

In particular this is ff. embedding

Anim(C)↪ Funπ(F opC ,Spt) =∶ Animnc(C)

with stable target and with ess. image closed under finite colimits and extensions.
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Proof. (Sketch). Use the infinite loop space machine.

• Every X ∈ Anim(C) iff X ∶ F op
C
→ Anim actually takes values in E∞ − grp. This is done by reducing to

the representable objects.

• E∞ − grp ≃ Spt≥0 ↪ Spt.

Remark 4.24. Animnc(C) ≃ lim←Ð(⋯ ΩÐ→ Anim(C) ΩÐ→ Anim(C))

Definition 4.25. A nonconnective animated A-module is an object in Animnc(C), which we denote

D(A) Animnc(ModA) stable

D(A)≥0 Anim(ModA) prestable

D(A)♡≥0 ModA abelian

∶=

=
⊂

⊂
=

5 Sheaves

5.1 Addendum to Derived functors

5.1. Recall φ ∶ A→ B a ring homo.

ModA ModB
φ∗

φ∗

5.2. φ∗ admits a right adjoint, coextension of scalars.

M ∈ ModA ↦ HomA(B,M) ∈ ModB

This implies φ∗ preserves small colimits. Inducing left derived functor,

Lφ∗ ∶ D(B)≥0 → D(A)≥0

which commutes with sifted colimits and (co)finite products hence all colimits. Extends

FB ModB ModA D(A)

Proposition 5.3. The derived functor satisfies

1. Lφ∗ preserves limits and colimits.

2. Lφ∗ preserves underlying anima

3. Lφ∗ conservative (detects isos).

Remark 5.4. 2 implies Lφ∗ preserves and detects discreteness.
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Proof. (of 2). Let N ∈ D(B)≥0.

Lφ∗(N)○ =≃ MapD(A)≥0
(A,Lφ∗(N))

≃ MapD(B)≥0
(Lφ∗(A),N)

≃ MapD(B)≥0
(B,N)

≃ N○

Note that for A ∈ FA,

Lφ∗(A) ≃ φ∗(A) ≃ B

(of 3). Follows from 2. and the fact

D(A)≥0 → Anim

M ↦M○

is conservative. This is because FA is generated by A under finite coproducts, see 5.5.

5.5. Conservativity of M ↦M○. Let α ∶M → N in D(A)≥0. Assume that M○ ≃Ð→ N○ iso. in Anim. We are
given M ∶ F opA → Anim. It suffices to show that

M(A⊕n) αÐ→ N(A⊕n)

iso for all n. But this is equivalent to

M(A)×n ≃Ð→ N(A)×n

5.6. Notation. φ∗ = Lφ∗ ∶ D(B)≥0 → D(A)≥0.

5.7. Construction. − ⊗L −. RHom right adjoint bifunctor to

− ⊗L − ∶ D(A)≥0 ×D(A)≥0 → D(A)≥0

which is the left derived functor of

− ⊗ − ∶ ModA ×ModA →ModA

Remark 5.8. φ∗φ
∗ ∶ (−)⊗A B as endofunctor of ModA This implies

Lφ∗Lφ∗ ≃ L(φ∗φ∗) ≃ (−)⊗L
A B

Lemma 5.9. φ ∶ A→ B a flat ring homomoprhism then

Lφ∗ ∶ D(A)≥0 → D(B)≥0

Write Lφ∗ in this case. We have this diagram

D(A)≥0 D(B)≥0

ModB ModB

φ∗

φ∗
⊂ ⊂
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Proof. Recall that φ∗ detects discreteness. It suffices to show

φ∗Lφ∗ ∶ D(A)≥0 → D(A)≥0

preserves discreteness. But the above map is identifed with

(−)⊗L
A B

B flat A-module, implies that B is a filtered colimit of fg free A-modules (Lazard).

Remark 5.10. FIltered colimits are preserved by the embedding

ModA ↪ D(A)≥0

This implies
M ⊗L

A B ≃M ⊗L
A (limÐ→

α

Nα) ≃ limÐ→
α

M ⊗Nα

where the last object is discrete by above remark.

5.2 Addendum to Additive categories

Definition 5.11. C an ∞-category with finite colimits and zero object. C is prestable if the following
equivalent conditions hold:

• C admits a ff embedding C ↪ D where D is stable, such that the essential image is closed under finite
colimits and extensions.

• Σ ∶ C → C is f.f. (⇔ ΩΣ ≃ id).

Example 5.12. Anim(C) is prestable if C is additive.

Example 5.13. D(A)≥0 is prestable for all A ∈ CRng.

Remark 5.14. Can use universal property of the construction

Anim(C)↝ Animnc(C) = lim←Ð(⋯ ΩÐ→ Anim(C))

to extend derived functors to nonconnective objects.

5.3 Reminder on sheaves of sets

5.15. If X ∈ Top, B a basis. Assume B is intersection closed : for all U ⊂X open, ∃U = ⋃Ui, Ui ∈ B such that

Ui0 ∩⋯ ∩Uin ∈ B for all finite {i0, . . . , in} ⊆ I

For any presheaf F on X tfae.

1. F is a sheaf.

2. for all U = ⋃Ui covering with Ui ∈ B we have the limit diagram

F(U) ∏iF(Ui) ∏i,j F(Ui ∩Uj)
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Example 5.16. If X coherent top. space (the collection Uc(X) of compact opens of X is closed under
intersection and forms a basis of X). Then Uc(X) is an intersection closed basis, so we get F is a sheaf on X
iff U = ⋃iUi finite covering Ui ∈ B,

F(U) ∏iF(Ui) ∏i,j F(Ui ∩Uj)

iff by indiction U = U1 ∪U2, Ui ∈ B, it suffices to check Mayer-vietoris type condition:

F(U) F(U1)

F(U2) F(U1 ∩U2)

6 Sheaves with values in ∞-categoires

Definition 6.1. X top. space, X = ⋃Ui. The Čech nerve of the famil (Ui)i is the simplicial diagram

⋯⊔i,j,k Ui,j,k ⊔i,j Ui,j ⊔Ui denoted C̆(U,X)

note that I have omitted the left morphisms. This is coproduct is taken in category of presheaves.

Definition 6.2. F ∶ U(X)op → V, V is an ∞-category with limmits. F satisfies descent (i.e. a sheaf ) if:

F(U)→ Tot(FC̆(Ui/U)))

(where U is covered by this Ui) is an iso in V. The coslimplicial diagram is defined via lke.

Example 6.3. If V is an ordinary category, this limit is the same as the equalizer previously defined.

Theorem 6.4. X is a coherent top. space. V is an ∞-cat with limmits, F ∶ U(X)op → V a presheaf tfae.

1. F is a sheaf.

2. for all U,V ⊆X cmopact open subsets

F(U ∪ V ) F(U)

F(V ) F(U ∩ V )
⌟

is cartesian in V.

Theorem 6.5. X top. space. B ⊆ U(X) basis which is ∩-closed (intersection closed), such that every U ∈ B
is compact. F ∶ U(X)op → V a presheaf. tfae.

1. F satisfies descent. (is a sheaf).

2. for all U1, . . . , Un ∈ B such that U = ⋃Ui ∈ B, then

F(U) lim←ÐS/=∅
F(US)≃

limit over nonempty subset S ⊆ {1, . . . , n} where US = ⋂i∈S Ui.
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Example 6.6. (Animated modules) X affine scheme = SpecA. There exists a unique Zariski sheaf on ZZar

(small zariski site)

D ∶ (XZar)op →∞−Cat

whose values on U(f) = V (f)c is

D(U(f)) ≃ D(A[f−1])

Moreover D(U)♡ ≃ q.c. sheaves on U .

6.1 Sheaves on site

6.7. Site = category C with Grothendieck topology τ . Then can talk about sheaves on C.

Example 6.8. X is top. space. U(X) the Grothendieck topology is generated by family (Ui → U)i∈I , Ui ⊂ U
opens, U = ⋃Ui.

Example 6.9. XZar=Small zariski site, of a scheme X as a category: U(X) with induced topology as 6.8.

Example 6.10. (Big Zariski (affine) site). The underlying category is Schaff . The topology τ is the topology
generated by finite Zariski covering families

(Ui ↪X) open embedding

which is jointly surjective, i.e.

(⊔Ui↠X)

(equivalently is faithfully flat.)

Definition 6.11. C a site, B ⊂ C a full subcategory is a basis for C if for all X ∈ C, exists a family (Yα →X)α,
Yα ∈ B which generates a covering sieve.

• B ⊆ C is ∩-closed if C admits fibered products.

• B ⊆ C is closed under finite products

• for all X ∈ C exists family (Yα →X)α∈Λ, Yα ∈ B and

Yα0 ×X ⋯×X Yαn ∈ B

∀{α0, . . . , αn} ⊂ Λ

(which generates a covering sieve).

Remark 6.12. B ⊆ C basis ⇒ induced a topology ono B from C. (a sieve is covering ⇔ image in C is
covering).

Theorem 6.13. C site, B ⊆ C, ∩- closed basis, F ∶ Cop → V presheaf. tfae.

1. F is a sehaf on C.

2. F ∣B is a sheaf on B.

Remark 6.14. Under assumptions on the topoology on C can prove that descent can be checked using
squares (Voevodsky) cd-structures.
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6.15. Let i ∶ B ↪ C be inclusion.

Fun(Cop,V) Fun(Bop,V)

ShvV(C) ShvV(B)

i∗

i∗

⊂ ⊂

Fact. i∗ admits a right adjoint which is rke. Given F0 ∶ Bop → V,

F ∶= rke(F0) ∶ Cop → V, F(X) ≃ lim←ÐF(X0)

where the limit s taken over (X0, u), X0 ∈ B, u ∶X0 →X morphism.

7 Bonus: Animated modules vs. connected chain complex

Sebastian.

7.1. R ∈ CRng. Write Ch(R) for the cat of chain complex of R-modules.

Proposition 7.2. [Lurb, 1.3.5.3] Ch(R) admits a left proper combinatorial model structure where

• cofibs = level-wise monomorphisms.

• weak equiv. = quasi-isos.

7.3. localization. C is an ∞-category. W ⊆ C is a subcategory, a localization of C by W is a functor
γ ∶ C →W −1C s.t.

• W −1C is an ∞-cat.

• such that for all ∞-cat D,

Fun(W −1C,D) γ∗Ð→ Fun(C,D)
is ff. and a functor F ∶ C → D is in ess. image iff F inverts morphisms in W .

Example 7.4. 1. Anim ≃ [we]−1N(Set∆)

2. Any ∞-cat is a loc. of a 1-cat.

3. hW −1C ≃ hW −1hC
Definition 7.5. D(R) ∶= qi−1 Ch(R).
Theorem 7.6. D(R) is a presentabble stable ∞-cat.

Proof. More generally, (C,W ) any combinatorial model category. Then W −1C is presentable (Dugger).
[Cis20, 7.11?]. For stability, we show Σ ∶ D(R)→ D(R) is an equivalence. We 1-pushout in Ch(R). For any
C∗ ∈ Ch(R),

C∗ Cone(C∗)” = ”C∗ ⊕C∗[1]

0∗ C∗[1]

⌜

note the differential on the cone is slightely different. C∗ ↪ Cone(C∗) is a cofibration in Ch(R), It follows
that the square is a pushout in D(R).

Cone(C∗) ≃ 0. This implies Σ coincides with C∗ ↦ C∗[1] and this is an equivalence.
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Definition 7.7. A t-structure on a stable ∞-cat is a t-structure on hC. i.e. we have two full subcats
hC≥0, hC≤0 ⊂ hC such that

• For X ∈ hC≥0, Y ∈ hC≤0

HomhC(X,Y [−1]) ≃ 0

• hC≥0[1] ⊂ hC≥0 and dually.

• for all X ∈ hC¡ there is a fiber sequence

X ′ →X →X ′′

with X ′ ∈ hC≥0,X
′′ ∈ hC≤0.

7.8. We obtain two full subcategories C≥0,C≤0.

Example 7.9. D(R) with

D(R)≥0 = {C∗ ∶ H∗(C∗) = 0∀i < 0}

D(R)≤0 = {C∗ ∶ H∗(C∗) = 0∀i > 0}

Theorem 7.10. The functor ModR → D(R)≥0 (connective. chain complex) M ↦M[0], induces an equiva-
lence on ∞-cat,

Anim(ModR)
≃Ð→ D(R)≥0

Here ModR is a 1-category.

Proof. Step 1. i is ff. True more generally, if C has t-structure, C♡ ∶= C≥0 ∩ C≥0 ≃ NhC♡. This is true since for
X,Y ∈ C♡, then

πnMapC(x, y) ≃ π0 MapC(X,Y [−n]) ≃ 0

Step 2. for all P ∈ ProjR category of fg. project R-mod, i(P ) ∈ D(R)≥0 is compact project. This implies the
functor correpresented by i(P ) preserves filtered colimits+ geom. realizations.

filtered colimits. Let K ∈ D(R) is compact iff K ∈ hD(R) is compact. [Lurb, 1.4.4.1]

⊕
α

HomhD(R)(K,Tα)
≃Ð→ HomhD(R)(K,⊕

α

Tα)

And the compact objects in hD(R) are precisely the perfect complexes. 2. In particular P [0] is a perfect
complex.

geometric realizations.

Lemma 7.11. Let Q ∈ D(R)≥0 s.t. for all X ∈ D(R)≥0,

HomhD(R)(Q[−i],X) ≃ Exti(Q,X) = 0 for all i > 0⇒ Q is proj

(projective as in) Map(Q,−) commutes with geometric generalizations.

2Equivalent to bounded complex of fg. proj. modules
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Step 3. By 1+2, i ∶ Proj ↪ D(R)≥0 induces a ff colimit preserving functor, inducing ff. colimit preserving
functor [Lura, 5.5.8.22], F ∶ Anim(ModR)→ D(R)≥0.

Presentability implies we get right adjoint G ∶ D(R)≥0 → Anim(ModR). Let X ∈ D(R)≥0, have a counit map

εx ∶ FGX →X

wts εx is an equivalence. To show this we observe

MapAnim(ModR)(R,GX) ≃ MapD(R)≥0
(R[0], FGx) εxÐ→MapD(R)≥0

(R[0] = FR,X)
where the outer triangle is equivlanece by adjunction. This implies

πn(MapD(R)≥0
(R[0], FGx) πn(MapD(R)≥0

(R[0],X)

π0(MapD(R)≥0
(R[n], FG(X)) Hn(X)

HomhD(R)≥0(R[n], FGX)

Hn(FGX)

≃

≃

≃

≃

≃

≃

7.12. Have map

MapD(R)(P,−) ∶ D(R) Anim

Sp

h(P ) Ω∞

Observe
π−nMap(P,X) = Extn(P,X[n])

This implies h(P ) restricts to a functor
F ∶ D(R)≥0 → Sp≥0

Goal F preserves geo. real. Then it suffices too show D(R)≥0 → Sp≥0

Ω∞

ÐÐ→ Anim. commutes with geo.
realization. The second map commutes with geo realization from [Lurb, 1.4.3.9].

7.13. [Lurb, 1.3.3.10]. Suffices to see that for all n,

D(R)≥0 Sp≥0 Sp≥0,≤n
F τ≤n

for all n. Now observe

D(R)≥0 Sp≥0

(D(R)≥0)≤n Sp≥0,≤n

τ≤n

F

τ≤nF

τ≤nF is a right exact functor between n-categories. Such a functor always preserves geoemtric realization.
Note the vertical maps commutes with all colimits.
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8 Quasi-coherent Sheaves

8.1 Addendum

Proposition 8.1. (Universal properties of Animnc(C). C, D are additive algebraic categories. F ∶ Anim(C)→
Anim(D)

1. If F commutes with Ω then it extends uniquely to a functor

F nc ∶ Animnc(C)→ Animnc(D)
such that Ω∞−n ○ F nc ≃ F ○Ω∞−n.

Informally, (X0, S1, . . .)↦ (F (X0), F (X1), . . .).

2. If F commutes with Σ then it extends uniquely to a functor

F nc ∶ Animnc(C)→ Animnc(D)
F nc ○Σ∞−n ≃ Σ∞−n ○ F for all n ≥ 0, where

Σ∞−n ∶ Anim(C)→ Animnc(C)
is left adjoint to Ω∞−n.

8.2.
Σ∞ ∶ Anim(C)→ Animnc(C)

F nc preserves connective objects.

Proof. 1. We have diagram

Animnc(C) ⋯ Anim(C) Anim(C)

Animnc(D) ⋯ Anim(C) Anim(C)
Fnc

Ω

F F

Ω

the diagram commutes by hypothesis.

2. Dually can prove

Anim(C) Anim(C) ⋯ ⋯ Animnc(C)Σ

colimit in the ∞-cst of presentable ∞-categories of colimit preserving functors. This follows from
PrL ≃ (PrR)op and we have a limit prserving +reflecting functor PrR ↪ Ĉat∞.

Example 8.3. φ ∶ A→ B ring homomorphism.

Lφ∗ ∶ D(A)→ D(B)
which restricts to

Lφ∗ ∶ D(A)≥0 → D(B)≥0

similarly
φ∗ ∶ D(B)→ D(A)

which restricts to
φ∗ ∶ D(B)≥0 → D(A)≥0
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8.2 Grothendieck topologies

8.4. Zariski topology on CRngop is the Grothendieck topology gen. by families

(A φiÐ→ Ai)i

where φi flat epimorphisms (Ai ⊗A Ai
≃Ð→ Ai) of finite projective such that A→∏Ai fiathfully flat.

• Equivalently, finite familes (A→ A[f−1
i ])i where fi ∈ A jointly generate a unit ideal of A.

• Under the equivalence CRngop ≃ Schaff this is the big affine Zariski Site.

Theorem 8.5. The functors
D≥0,D ∶ CRng → Cat∞

which are respectively described as
A↦ D(A)≥0, ϕ↦ Lϕ∗

A↦ D(A), ϕ↦ Lϕ∗

satisfies Zariski descent.

• In particular, fr every famil (A→ Ai)i generating a Zariski covering sieve there is a limit diagram

D(A) ∏iD(Ai) ∏i,j D(Ai ⊗A Aj) ⋯

8.3 Quasicoherent sheaves on affine schemes

Theorem 8.6. X = Spec(A) an affine scheme. Then there exists a unique Zariski sheaf of ∞-cat on the
small Zariski XZar.

D ∶Xop
Zar → Cat∞

whose values on elementary opens U(f) are given by

D(U(f)) ≃ D(A[f−1])

Moreover: any affine open U = SpecR ⊆X,

D(U) ≃ D(B)

Remark 8.7. This implies there exists unique OX ∈ D(X) whose restriction to any elementary open
U(f) ⊆X is A[f−1] ∈ D(A[f−1]) ≃ D(U(f)). This is the structure sheaf of X. Happens to be discrete.

8.8 (?). Claim:. D ∶ (Schaff)op → Cat∞, SpecA↦ D(A) is a Zariski sheaf.

Let X ∈ Schaff , (Uα →X)α, Zariski covering, then

D(X)→ Tot(D(C̆(Uα/X)●)

is an equivalence. Note Uα are all afine, so this is special case of the previous theorem.

Remark 8.9. Descent for D (limits of D≥0) follows from D≥0. The sheaf condition only involve limits.
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Lemma 8.10. (fpqc conservativity) φα ∶ (A → Bα)α finite fmaily of flat ring homomorphisms such that
A→ B ∶=∏Bα is faithfully flat, then the family of fucntors

Lφ∗α ∶ D(A)≥0 → D(Bα)≥0

is jointly conservative. Some omit the L as the rings are flat, hence, preserves discrete objects.

Proof.

• Note D(B)≥0 ≃ ∏αD(Bα)≥0. Therefore we may as well assume that the family consists of a single
faithfully flat map.

• Claim: if φ∗M ≃ 0 then M ≃ 0 (M ∈ D(A)≥0).

• Note. M ≃ 0 ⇔ πiM = 0 for all i ≥ 0.3

⇔ πiM ⊗A B ≃ 0 for all i

⇔ πi(M ⊗L
A B) ≃ 0 for all i (flatness)

⇔M ⊗L
A B ≃ 0

Proof. of Thm 8.6. Apply last lecture. Sufficient to show.

• Claim. U,V ⊂X affine opens such that U ∪ V affine. Then

D(U ∪ V ) D(U)

D(V ) D(U ∩ V )
⌟

(Take Uaff(X) ⊂ U(X) affine opens. This is a ∩-closed basis since X affine. )

• wlog: X = U ∪ V .

• A ∶= Γ(X,OX),A1 = Γ(U,OU),A2 = Γ(V,OV ),A12 = Γ(U ∩ V,OU∩V ). Want.

F ∶ D(A) ≃Ð→ D(A1) ×D(A12) D(A2)

• G ∶ D(A1) ×D(A12) D(A2)→ D(A) right adjoint. The lhs consists of

(M1,M2,M1 ⊗A1 A12 ≃M2 ⊗A2 A12)↦M1 ×M12M2

where Mi ∈ D(Ai).

• Check. unit. id ≃ GF . For all M ∈ D(A)≥0,

M
≃Ð→M1 ×M12 M2

M? ∶=M ⊗A A?

3This is because M ↦M○ is conservative.
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• Apply fpqc conservativity: (derived) extension of scalars along A→ A1,A→ A2 is jointly conservative.
( A→ A1,A→ A2) is a fin. flat family which is jointly faithfully flat. )

• Want M ⊗A Ai → (M1 ×M12 ⊗M2)⊗A Ai iso. for all i ∈ {1,2}. The rhs (wlog i = 1) [?]

≃ (M1 ⊗A Ai)⊗MA12⊗AAi (M2 ⊗Ai)

• Now it suffices to show that G is conservative. Exercise. This implies by rke along Uaff(X) ⊂ U(X)
gives you sheaf of XZar.

8.4 Quasicoherent sheaves on schemes

Theorem 8.11. 1. There is a unique Zar sheaf

D ∶ (Sch)op → Cat∞

which extends D ∶ (Schaff)op → Cat∞.

2. Moreover
D(X) ≃Ð→ lim←Ð

S,S→X

D(A)

over pairs (S = SpecA,S →X) where S affine and S →X is a morphism.

8.12. Recall. (Comment on last time) Sch by Zariski site, topology generated (Ui →X)i open immersions

⊔Ui →X is jointly surjective.

Proof. • There is an equivalence, for any V an ∞-cat with limits,

ShvVZar(Sch) ≃Ð→ ShvVZar(Shvaff)

Schaff ⊂ Schsep and Schsep ⊆ Sch are bases which are ∩-closed.

• D ∶=rke of D ∶ (Schaff)op → Cat∞.

Remark 8.13. No analogue statement for triangulated categories.

hD ∶ (Schop → TriCat→ Cat

X ↦ hD(X)

do not satisfy descent.

D(P1) ≃Ð→ D(An) ×D(A1∖{0}) D(BA1)

fails at hD level.

Corollary 8.14. X ∈ Sch. 4 (XZar)op
DÐ→ Cat∞ is a Zariski sheaf. Proof by restriction. [?]

4Different to 8.6 which is for affine.
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Proposition 8.15. X ∈ Sch. The zariski sheaf D ∶ (XZar)op → Cat∞ is the right kan eztension of its
restriction to Uaff(X). In particular, for all U ⊆ x open

D(U) ≃Ð→ lim←ÐD(V )

This implies D is the unique Zariski sheaf on XZar whose values on affine opens U = SpecA ⊂ X are
D(U) ⊆ D(A).

Proof. Usep(X) ⊆ U(X), Uaff(X),Usep(X) forms ∩-closed basis.

Definition 8.16.

• A quasi-coherent complex on a scheme X is an object F ∈ D(X).

• A qcoh. animated sheaf /connective qcoh. complex. on X is an object F ∈ D(X)≥0

Example 8.17. • X = SpecA affine D(X) ≃ D(A).

• X scheme, D(X) ≃Ð→ lim←ÐU⊆X D(U). A qcho complex on X amounts to

– For all U = SpecA ⊆X an FU ∈ D(U) ⊆ D(A).
– ∀U ⊆ V ⊆X inclusion of affine opens

FU ∣V ≃ F ∣V
– homotopy coherent system of compatibilities between these isos.

• F ∈ D(X) is connective ⇔ ∀U = Spec(A) ⊆ X affine open, Γ(U,F) ∈ D(A) is a connective animated
module (∈ D(A)≥0.

• F ∈ D(X) is discrete ⇔ ∀U = Spec(A) ⊆X affine open, Γ(U,F) ∈ D(A) is discrete.

Corollary 8.18. • X ↦ D(X)♡ Zariski sheaf of caegories, detrmined D(SpecA)♡ ≃ ModA for all A ∈
CRng.

• D(X)♡ ≃ QCoh(X) is abelian cat. of qcho OX -modules.

Remark 8.19. D(X) is a stable ∞-cat for all X ∈ Sch. D(X)≥0 is prestable.

9 Direct image functor

Definition 9.1. (Inverse image functor). f ∶X → Y be a moprhism of schemes.

D(f) ∶ D(Y )→ D(X)

inverse imamge denoted Lf∗ ∶= D(f). D ∶ (Sch)op → Cat∞.

9.2. We have induced functor

D(Y )≥0 D(X)≥0
Lf∗

Example 9.3. f ∶X → Y a morphism of affine schemes. X = SpecB,Y = SpecA. Corresponds to ring homo.
φ ∶ A→ B, then

Lf∗ ∶ D(Y ) ≃ D(A)→ D(X) ≃ D(B)
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Example 9.4. If j ∶ U →X is open affine subscheme. Then the following diagram commutes

D(X) lim←ÐD(V )

D(U)
j∗

In otherwords, give F = (FV )V ∈ D(X), then j∗ is given by projection onto the component.

Example 9.5. f flat. f ∶X → Y implies induces a functor on discrete objects.

Lf∗ ∶ D(Y )♡ → D(X)♡

This follows by descent from affine case.

Corollary 9.6. (”Internal descent”). If X ∈ Sch, F ∈ D(X).

Notation. Γ(U,F) ∶= MapD(U)OU ,FU), U ⊆X open. 5

Claim: (For simplicity, assume X is qcqs) Γ(−,F) is a sheaf of anima on XZar. In particular, we want

Γ(U ∪ V,F) Γ(U,F)

Γ(V,F) Γ(U ∩ V,F)
⌟

for all U,V ⊆X q.c open.

Remark 9.7. Harry. This is also a sheaf on the large Zariski site over X.

Proof. Note that for any G,G′ ∈ D(U ∪ V ),

MapD(U∪V )(G,G′) MapD(U)(G∣U ,G′∣U)

MapD(V )(G∣V ,G′∣V ) MapD(U∩V )(G∣U∩V ,G′∣U∩V )
⌟

This follows because the square in D(−) is cartesian. And formation of mapping spaces of ∞-categories
commutes with ”limits”.

Apply this to G = OU∪V ,G′ = F ∣U∪V .

9.1 Direct image

Definition 9.8. If f ∶X → Y in Sch, we have Rf∗ ∶ D(X)→ D(Y ) direct image, is the right adjoint of LF ∗.

Example 9.9. X = SpecB,Y = SpecA, phi ∶ A→ B, we have

Rf∗ = φ∗ ∶ D(A)→ D(B)

in particular preserves connective and discrete objects.6

5Can also think FU ≃ j∗(F)
6Hence, we would write f∗ = Rf∗.
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9.10. Rf∗ typically does not preserve connectivity for non-affine morphisms.

Theorem 9.11. f ∶X → Y any qcqs morphism

1. Rf∗ commutes with colimits.

2. Base change formula.

X ′ Y ′

X Y

g

p ⌟ q

f

Lq∗Rf∗ → Rg∗Lp∗

if f, q are are flat (more generally tor-independent squares)

3. Projection formula: F ∈ D(X),G ∈ D(Y ),

Rf∗(F)⊗L G ≃Ð→ Rf∗(F ⊗L Lf∗G))

canonical iso.

Remark 9.12. Given commutive square

C C′

D D′

f

p q

g

assume f, p, q, g have right adjoints fR, gR, pR, qR, then the sqaure - by flipping the vertical arrows -

D D′

C C′

g

pR qR

f

Then the square commtues upto natural transformation.

fpR → qRqfpR → qRgppR → qRg

We say that the (original) square is vertically right adjointable if the natrual transformoation is an iso.

9.13. The base change formual says that

D(Y ) D(Y ′)

D(X) D(X ′)

Lq∗

Lf∗ Lg∗

Lp∗

Remark 9.14. Lf∗ ∶ D(Y ) → D(X) is symmetric monoidal. ⇒ D(X) has a canonical D(Y )-module
structure. Projection formula for Rf∗ says that Rf∗ is D(Y )-linear.



9.2 Descent for the direct image functor 32

Lemma 9.15. (Φi ∶ Di → Ci)i∈I diagram in Fun(∆1,Cat∞), I is some (∞-cat). Suppose that each square
are vertically right adjointable for i→ j in I,

Di Dj

Ci Cj

Φi Φj

Consider the induced functor
D lim←ÐiDi

C lim←Ði Ci

Φ

≃

≃

The square

D Dj

C Cj

Φ Φj

is vertically right adjointable for all i ∈ I.

Proof. Of base change in affine case. By the the lemma, reduce to animated modules (connective complexes).

A B

A′ B′

φ

ψ ⌜ ψ′

φ′

B′ ≃ B ⊗A A′ ≃ B ⊗L
A A

′

Do we have

Lψ∗φ∗
?Ð→ φ′∗Lψ

′
∗

N ⊗L
A A

′ → N ⊗L
B B

′

But
N ⊗L

B B
′ ≃ N ⊗L

B B ⊗L
A A

′ ≃ N ⊗L
A A

′

9.2 Descent for the direct image functor

Remark 9.16. X ∈ Sch, U,V ⊆X open. F ∈ D(U ∪ V ), jU ∶ U ↪X inclusion (V,U ∩ V ). Then

jU∪V,∗(F) ≃Ð→ jU,∗(FU) ×jU∩V,∗ (FU∩V )jV∗F(V )

Indeed this follows from the equivalence

(j∗U, j∗V ) ∶ D(U ∪ V ) ≃Ð→ D(U) ×D(U∩V ) D(V )

Right adjoint :
(F ,G,F ∣U∩V ≃ G∣U∩V )↦ jU,∗(F) ×jU∩V,∗ jV,∗(F)

The map in question is the unit map of the adjunction.
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Corollary 9.17. f ∶X → Y , X = U ∪ V open cover, fU = f ∣U , etc. If F ∈ D(X), then

f∗(F) ≃Ð→ fU,∗(FU) ×fU∩V,∗(FU∩V ) fV,∗(FV )

Proof. Apply f∗ to previous isomorphism.

9.3 Sketch of proof of bsae change formula

9.18. Case 1: j ∶ U ↪X is open immersion. U ⊆X is quasicompact. f ∶X ′ →X morphism of affine schemes.
7

U ′ X ′

U X

j′

fU f

j

Claim:

f∗j∗
≃Ð→ j′∗f

∗
U

If U is affine, then we already know this.

• U = V ∪W and the claim holds for V and W , then it holds for U .

This follows from ”descent for j∗.” From sec. 9.2.

• U qc. can write U = ⋃iU(fi) by finite union of elementary opens. We conclude by induction.

9.19. Case 2. 8.

X ′ Y ′

X Y

g

p ⌟ q

f

Y,Y ′ affines, f ∶X → Y qc. Can argue similarly by induciton on an affine open cover of X, ”descent for f∗”.

9.20. General case. Use ”adjointability of limits” lemma and descent to reduce to the case where Y,Y ′ are
affine.

9.4 Direct image along along open immersions

Corollary 9.21. U ⊆X qc open. j ∶ U ↪X. Then the functor

Rj∗ ∶ D(U)→ D(X)

is fully faithful.

• Equivalently, j∗Rj∗
counitÐÐÐ→ id ∶ D(U)→ D(U) is an isomorphism.

7All the functors now will have R omitted for simplicity.
8Now we revert back to original notation
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Proof. We have cartesian square, j flat,

U U

U X

j

j

Apply base change formula.

9.22. Z ⊂X closed subsecheme i ∶ Z →X, R∗ is typically not f.f. even though i∗ ∶ QCoh(Z)→ QCoh(X) is
fully faithful. What fails is that

Z Z

Z X

i

i

is not Tor-independent.

10 Perfect complexes

10.1 Perfect complexes

Definition 10.1. C stable ∞-category. C0 ⊆ C full subcategory.

• C0 is stable if it contains the zero object 0 ∈ C and is closed under (co)fibers in C.
Equivalently C0 is a stable ∞-category, and the inclusion is an exact functor.

• C0 is thick if it stable and moreover closed under direct summands (=retracts) in C.

Definition 10.2. M ∈ D(A) is perfect if it is contained in the thick subcategory generated by the object
A ∈ D(A). Dperf(A) ⊆ D(A) be full subcategory of perfect modules.

Example 10.3. f ∈ A. cofib(A fÐ→ A) ∈ Dperf(A)≥0. This is Koszul ”complex” on the element f). More
generally if f1, . . . , fn ∈ A, then

Kf1,...,fn ∶= ⊗L cofib(A fiÐ→ A) ∈ Dperf(A)≥0

Non example. A = k[x]/(x2). k ∈ D(A) is not perfect.

Definition 10.4. X scheme. F ∈ D(X) is perfect if for all U = SpecA ⊆X, FU ∈ D(U) ≃ D(A) is perfect.

Corollary 10.5. The presheaf of ∞-cat,

Dperf ∶X ↦ Dperf(X)

satisfies Zariski descent.

Proof. Dperf ⊆ D is sub presheaf. Since D is a sheaf, Dperf is a sheaf as long as it is deifned by a ”local”
property.

Theorem 10.6. X qcqs. Then every F ∈ D(X) can written as a filtered colimit of perfect complexes.

F ≃ limÐ→Fα,Fα ∈ Dperf(X)

Variants.
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1. F ∈ D(X)≥0 then F can be taken connective.

2. If F is supported on a closed subset Z ⊂ X (with complement X ∖ Z qc) then also Fα can be taken
supported on Z.

F is supported on Z iff j∗F ≃ 0, j ∶X ∖Z ↪X. We let

DZ(X) ⊆ D(X)

Dperf,Z(X) ⊆ Dperf(X)

10.2 Compactly generated ∞-categories

Definition 10.7. C an ∞-category with filtered colimits. An object X ∈ C is compact if

MapC(X,−) ∶ C → Anim

commutes with filtered colimits.

Remark 10.8. If C is stable ∞-cat. Then C0 ⊂ C full subcategory of compact objects is thick. This follows
from the following ingredients

• filtered colimits commutes with finite limits.

• A retract of an iso is an iso.

Example 10.9. If A is a commutative ring. Every M ∈ D(A) perfect is a compact object.

Proof. By remark, suffices to show for A as a module over itself since A generate Dperf(A) as a thick
subcategory by definition. Now

MapD(A)(A,−) ≃ (−)○ ∶ D(A)→ Anim

commutes with filtered colimits.

Definition 10.10. C an ∞-category. C is compactly generated if admits (small) colimits and every object
X ∈ C is a filtered colimit of compact objects Xα ∈ C0 where C0 ⊂ C is ess. small full subcategory.

10.11. Ind-completion. If C is a small stable ∞-cat.

Ind(C) ∶= Funlex(Cop,Anim) = {finite limit preserving}

Claim:

1. IndC is stable.

2. Yoneda C ↪ Fun(Cop,Anim) factors through Ind(C), exhibiting Ind(C) as the free completion of C by
filtered colimits.

3. Factors through C → Ind(C)ω = {compact object in Ind(C)}. This functor is an idempotent completion.
i.e. it is ff. every object in the target is a direct summand(or retract) of an object in C.

Remark 10.12. C is compactly generated iff ∃ full subcategory C0 ∈ C (ess. small and admits finite colimits)

s.t. Ind(C0) ≃ C is an equivalence iff Ind(Cω) ≃Ð→ C is an equivalence, where Cω is full subcategory of compact
objects.
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Proposition 10.13. C an algebraic category.

1. Anim(C) is compactly generated.

2. If C is additive, then Animnc(C) is compactly generated.

Proof. 1. Anim(C) ⊆ Fun(F op
C
,Anim) =∶ D. There is a localzation functor

L ∶ D → Anim(C)

which is left adjoint to inclusion. Hence L(Dω) ⊂ Anim(C) generates under filtered colimits under colimits
and L preserves compact objects.

2. General fact: A is compactly generated. Then

Stab(A) ∶= lim←Ð(⋯ ΩÐ→ A ΩÐ→ A)

is compactly generated.

Corollary 10.14. A a ring. D(A),D(A)≥0 are compactly generated. Morever M ∈ D(A) is compact iff
M ∈ Dperf(A).

Proof. Ind(Dperf(A)) ≃ D(A). Hence Dperf(A) ≃Ð→ D(A)ω.

Corollary 10.15. X scheme. F ∈ D(X) is compact. Then F is perfect.

Proof. Suffices to show that FU ∈ D(U) is perfect for all U ⊂ X affine open j ∶ U ↪ X. FU ∶= j∗(F). j∗
preserves compact objects since Rj∗ preserves (filtered) colimits. Since U affine, this implies FU is perfect.

10.3 Grothendieck prestable ∞-categories

Definition 10.16. C ∞-category is called presentable if

• κ-compactly generated for some regular cardinal κ. (admits colimits and every object is a κ-filtered
colimits of κ-compact objects in C0 ⊆ C, full subcat, which is ess. small, κ-small colimits. )

Definition 10.17. A prestable ∞-cat. C is Grothendieck

• C presentable.

• filtered colimits are left exact iff Ω ∶ C → C commtues with filtered colimits.

Remark 10.18.

ab cat↔ prestable ∞
Groth ab↔ Groth prestable ∞

The map from rhs to lhs is
C ↦ C♡

Proposition 10.19. Limits of a diagram Groth stable ∞-cat with left exact colimit preserving functors is
Groth. prestable.

Example 10.20. D(X) is Groth. prestable for all X ∈ Sch. D(X)≥0.



37 10.3 Grothendieck prestable ∞-categories

Theorem 10.21. [Lurc, C.6.3.3] C a Groth. prestable ∞-cat. C is compactly generated iff for every nonzero
X ∈ C there exists a compact object X0 and a nonzero map X0 →X.

Example 10.22. M ∈ D(A) nonzero. There exists x ∈ πn(M), n ≥ 0 nonzer. This is equivalent to a nonzero
map

A[n]→M

A[n] is a compact object because it is a sheaf of A.

Lemma 10.23. X = SpecA affine. Z ⊂ Spec(A) closed subset. U ∶=X ∖Z. Then

DZ(X) = {F ∈ D(X) ∶ F ∣U = 0}

is compactly generated. Similarly for DZ(X)

Proof. Suffices to show for the connective case. Note

DZ(X)≥0 ≃ fib(D(X)≥0
j∗Ð→ D(U)≥0)

hence it is a Grothendieck prestable. Note M ∈ D(X)≥0 belongs to DZ(X)≥0

⇔ j∗(M) ≃ 0in D(U)
⇔ j∗∗(πn(M)) ≃ 0 in D(U)♡, ∀n ≥ 0

⇔ j∗α(πn(M)) ≃ 0, where U =⋃
α

U(fα), fα ∈ A, jα ∶ U(fα)→X

⇔ πn(M)[f−1
α ] ≃ 0∀α

⇔ πn(M) is f∞α -torsion∀α,n
⇔ ∃k sufficiently large fkαπn(M) = 0 for all α

Check criterion. M ∈ DZ(X)≥0 nonzero. α ∈ πn(M) nonzero. Which is a map

A[n]→M

Assume for simplicity, the sequence has only one element f (U = U(f)).

A A[n] Kf

M

f

0
α

α̃

The top map is a cofiber sequence. Here α̃ exists iff α ○ f is null homotopic. (fk ○ α = 0).

Note. Kfk ∈ D(A)≥0 is also supported on V (f). This implies Kfk ∈ Dperf,Z(X).

In general, choose k >> 0. This implies

K(fkα)α
[n]→M

is nonzero map. ”Koszul complex on (fkα)α.”
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10.4 Compact generation of D(X)
Theorem 10.24 (A). X qcqs scheme. The inclusion Dperf(X)↪X induces an inequivalences

Ind(Dperf(X)) ≃Ð→X

In particular, D(X) is compactly generated and the compact objects are the pefect complexes.

• Variant: Z ⊆X closed subset with qc open complement X ∖Z,

Ind(Dperf,Z(X)) ≃Ð→ DZ(X)

Theorem 10.25 (B). X qcqs scheme U ⊂X qc open

1. Every F ∈ Dperf(U) is a direct summand of some j∗G where G ∈ Dperf(X). 9

2. Moreover the essential image of j∗ is closed under extensions: for all

F ′ → F → F ′′

an exact triangle in Dperf(U), where

F ≃ j∗FX ,F
′′

≃ j∗F
′′

X

with F ′X ,F ′′X ∈ Dperf(X), then also F ′ ≃ j∗(F ′X), F ′X ∈ Dperf(X).

• Variant: Z ⊆X clsoed, X ∖Z ⊆X qc complement. If F supported on Z ∩U , then FX is supported on
U .

Lemma 10.26. If Theorem A holds for a scheme X, then theorem B. holds for X and arbitrary U ⊆X.

Proof. Proof of 1. F ∈ Dperf(U). Rj∗F ∈ D(X). Theorem A impies

j∗F ≃ limÐ→
α

Gα, Gα ∈ Dperf(X)

Apply j∗ then
j∗Rj∗(F) ≃ limÐ→

α

j∗(G)

Recall F ≃ j∗Rj(F), so F ≃ limÐ→α j
∗(Gα).

π0 Map(F ,F) ≃ π0(F , limÐ→
α

j∗Gα)

≃ limÐ→π0 Map(F , j∗(Gα)

This implies idF factors through j∗Gα. This shows that F is a direct summand of j∗(Gα).
Proof of 2. F ′ → F → F ′′ in Dperf(U). This implies we have exact sequence in D(U),

Rj∗(F ′)→Rj∗F →Rj∗(F ′′)

Claim: Rj∗(F ′′) is a filtered colimit of F ′′α such that j∗(F ′′α) ≃ F ′′.

9j∗ ∶ Perf(X)→ Perf(U)
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Indeed, let C be fiber of unit map

C = fiber→ F ′′X → Rj∗j∗(F ′′X) ≃ Rj∗(F ′′)

Note C ∈ DX∖U(X) supported away from U . Hence, theorem A shows

C ≃ limÐ→
α

Cα

Cα ∈ Dperf,X∖U(X).
F ′′
α ∶= cofib(Cα → C → F ′′X) ∈ Dperf(X)

j∗F ′′α ≃ cofib(0→ F ′′) ≃ F ′′

limÐ→
α

F ′′α ≃ cofib(C → F ′′α) ≃ Rj∗(F ′′)

Return to proof.

FX
unitÐÐ→ Rj∗j∗(FX) ≃ Rj∗(F)→ Rj∗(F ′′) ≃ limÐ→

α

F ′′α

this factors through some map
fα ∶ FX → F ′′α

since FX is compact. Finally let F ′X ∶= fib(fα ∶ FX → F ′′α).

j∗(F ′α) ≃ fib(F → F ′′) ≃ F ′

Proof. Of Theorem A. ⋃Vi =X, affine open cover of X. Ui = ⋃ij=1 Vj .

∅ = U0 ⊂ U1 ⊂ ⋯ ⊂ Un =X

Induction on n. Let F ∈ D(X),Fi ∶= F ∣Ui .

Claim: ∃βi ∶ Gi → Fi in D(Ui)≥0 with Gi ∈ Dperf(Ui).

U1 = V1 is affine. Exists β1 ∶ G1 → F1. Ui = Ui−1 ∪ Vi, Vi affine. From, W ∶= Ui−1 ∩ V ,

W Vi

Ui−1 Ui

⊂
⊂ ⊂

⊂

we obtain cartesian square

D(Ui) D(Ui−1)

D(Ui) D(W )
⌟

W ⊂ Vi qc open. βi−1∣W ,Gi−1∣W → Fi−1∣W .
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Apply Theorem B (have this by lemma + affine case) to assume that Gi−1∣W lifts to H ∈ Dperf(Vi). (possibly
adding a summand to Gi−1),

Similarly lift, v0 ∶= βi−1∣W ∶HU∩V → F ∣U∩V to v ∶H → F ∣V in Dperf(V ).

Finally apply descennt to glue j ∶H → F ∣Vi on Vi and βi−1 ∶ Gi−1 → F ∣Ui−1 .

11 Waldhausen K-Theory

11.1 Waldhausen’s S● construction

Definition 11.1. A Waldhausen ∞-category is an ∞-category C with zero object with a class of cofibrations.

1. The class of cofibrations cotains all isos and is closed under composition.

2. for all X ∈ C, 0→X is a cofibration.

3. Cofibrations are closed under cobase change along any morphism.

Example 11.2. If C is (pre)stable then there is a canonical Waldhausen structure where all maps are
cofibrations. 10

11.3. S● construction. C Waldhausen ∞-cat.

In ∶= {(i, j) ∈ [n] × [n] ∶ i ≤ j}

Gap[n](C) ∶=∞ -cat diagrams X ∶ In → C satisfying:

1. Xi,i is zero object for all i.

2. for all i ≤ j ≤ k, Xi,j →Xi,k is cofibration

Xi,j Xi,k

Xj,j Xj,k

is cocartesian.

Sn(C) ∶= (Gap[n](C))
≃ ∈ Anim

as n varies, we obtain

S●(C) ∶ ∆op → Anim

Definition 11.4. K(C) ∶= Ω∣S●(C)∣ ∈ Anim

Example 11.5. X ∈ Sch. K(X) ∶=K(Dperf(X)). (K(Dperf(X))≥0 ≃K(X)).

KZ(X) ∶=K(Dperf,Z(X))
10This is similar to the Waldhausen structure defined in the classical case of perfect complexes.
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11.2 The fibration theorem

Theorem 11.6. (Waldhausen fibration theorem; Barwick). Given a functor i ∶ C → D of compactly generated
stable ∞-cat. L ∶ C → D functor of compactly generated stable ∞-category admitting a ff right adjoint
i ∶ D → C. Assume that L preserves compact objects (iff i preserves colimtis)

C0 ∶= ker(Cω LωÐ→ Dω)

induced functors on comapct objects. There exists a fiber sequence of anima

K(C0)→K(Cω)→K(Dω)

Remark 11.7. There is an extension of this by a note of Marc Hoyois. K-theory of dualizable categories.

11.3 Localization and descent theorems

Theorem 11.8. X be qcqs. U ⊆X qc open. j ∶ U ↪X. We have a fiber sequence in Anim

KZ(X)→K(X) j∗Ð→K(U)

where the first map is inclusion of the perfect objects.

Proof. Consider

D(X) D(U)
j∗

Rj∗

Also, Rj∗ preserves colimits.

ker(j∗ ∶ Dperf(X)→ Dperf(U)) =∶ Dperf,Z(U)

compactly generated by Theorem A.

Remark 11.9.
Dperf(X)/Dperf,Z(X)→ Dperf(U)

is an idempotent completion. That is, fully faihtful and ess. surj. up to direct summands.

Remark 11.10. This is in fact a fiber sequence of connective spectra.

Theorem 11.11. (Zariski descent).

• The presheaf of anima
K ∶ Schopqcqs → Anim

satisfies Zariski descent.

• In particular: for every X ∈ Schqcqs,K ∶ (XZar)op → Anim also satisfies descent.

• Mayer Vietoris. X = U ∪ V a open covering of qc open then

K(X) K(U)

K(V ) K(U ∩ V )
⌟



11.3 Localization and descent theorems 42

Proof. Suffices to show Mayer-Vietoris claim. Z =X ∖U , Z ′ = V ∖U ∩ V . We have fiber sequence

KZ(X) K(X) K(U)

KZ′(V ) K(V ) K(U ∩ V )

The square is cartesian if and only if it induces isomorphisms on homotopy fibers. The horizontal rows are
fiber sequences by localization theorem.

The map
KZ(X)→KZ′(V )

is induced by Dperf,Z(X)→ Dperf,Z′(V ) Zariski descent on Dperf implies we have cartesian square on bottom
right

Dperf,Z(X) Dperf(X) Dperf(U)

Dperf,Z′(X) Dperf(V ) Dperf(U ∩ V )

≃ ⌟

the left most induced map is an equivalence (formal consequence11). In particular the induced map on K
theory is an equivalence.

Remark 11.12. Étale descent is true in rational K-theory. Integrally, this is the content of Bloch Kato
conjecture.

11Harry. 3-3 square + interchangeable limits.
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