Descent in algebraic K-theory

Adeel Khan

LiveTeX-ed notes. Comments/corrections are welcome. cwlin416@gmail.com. Note \subset does *not* mean strict inclusion. I use [?] to denote stuffs I have potentially missed.

Contents

1	Overview	2
2	 ∞-categories 2.1 Categoires as simplicial sets	3 4 5 6 7
3	Animated modules 3.1 Algebraic categories 3.2 Animated modules 3.3 Derived functors	7 7 10 11
4	Nonconnective animated modules 4.1 Suspensions and loops spaces 4.2 Infinite loop space 4.3 Stable ∞-categories 4.4 Animations of additive categories	12 12 14 15 16
5	Sheaves5.1Addendum to Derived functors5.2Addendum to Additive categories5.3Reminder on sheaves of sets	17 17 19 19
6	Sheaves with values in ∞ -categoires6.1Sheaves on site	20 21
7	Bonus: Animated modules vs. connected chain complex	22
8	Quasi-coherent Sheaves8.1Addendum8.2Grothendieck topologies8.3Quasicoherent sheaves on affine schemes8.4Quasicoherent sheaves on schemes	25 25 26 26 28
9	Direct image functor9.1 Direct image9.2 Descent for the direct image functor9.3 Sketch of proof of bsae change formula9.4 Direct image along along open immersions	29 30 32 33 33

10	Perfect complexes
	10.1 Perfect complexes
	10.2 Compactly generated ∞ -categories
	10.3 Grothendieck prestable ∞ -categories
	10.4 Compact generation of $\mathcal{D}(X)$
11	Waldhausen K-Theory
	11.1 Waldhausen's S_{\bullet} construction
	11.2 The fibration theorem
	11.3 Localization and descent theorems

1 Overview

1.1. Reminder. Let $A \in CRng, X \in Sch$ we have the following abelian groups.

$$K_0(A) \coloneqq K_0(\operatorname{Proj}_A) \simeq K_0(\operatorname{Perf}_A)$$

 $K_0(X) \coloneqq K_0(\operatorname{Vect}(X))$

We also have their enhancement as E_{∞} -spaces.

 $K(A) \coloneqq \text{group completion of } \operatorname{Proj}_{A}^{\simeq}$

 $K^{\text{naive}}(X) \coloneqq K(\text{Vect}(X)), \quad \text{Quillen } K\text{-theory of Vector Bundle}$

 $K(X) := K(\operatorname{Perf}(X)),$ Waldhausen K-theory of perfect complexes

1.2. If X has resolution property, then

$$K(X) \simeq K^{\text{naive}}(X)$$

 $K(\text{Spec}(A)) \simeq K(A)$

Theorem 1.3. (Thomason). Algebraic K-theory satisfies descent. That is: $X \mapsto K(X)$ is a "sheaf" in some sense.

1.4. Warning. The presheaf $X \mapsto K_0(X)$ of sets/abelian groups is not a sheaf.

1.5. Reminder. (Sheaf of sets). X a topological space.

- Let U(X) be poset (viewed as a category) of open subsets of X ordered by inclusion.
- A presheaf on X is a presheaf on U(X).
- A presheaf $F: U(X)^{\text{op}} \to \text{Set}$ is a *sheaf* if for all open cover $X = \bigcup_i U_i$, the diagram

$$F(X) \longrightarrow \prod_i F(U_i) \longrightarrow \prod_{i,j} (U_i \cap U_j)$$

is a limit diagram.

Example 1.6. $X \in \text{Sch}, E \xrightarrow{\pi} X$ a vector bundle. $\Gamma(-, E)$ the sheaf of sections of E.

 $\Gamma(U, E) \coloneqq \{s : U \to E : s \text{ is a section }\}, \quad U \hookrightarrow X \text{ open}$

Example 1.7.

 $X \mapsto \operatorname{Vect}(X) / \simeq = \{ \text{ iso. classes of vect. bundles} \}$

is not a sheaf.

Problem: vector bundles have nontrivial automorphisms.

Solution: $X \mapsto \text{Vect}^{\approx}$ (groupoid) is a *sheaf* in the 2-categorical sense. This means

$$\operatorname{Vect}(X)^{\simeq} \longrightarrow \prod_{i} \operatorname{Vect}(U_{i})^{\simeq} \longrightarrow \prod_{i,j} \operatorname{Vect}(U_{i} \cap U_{j})^{\simeq} \Longrightarrow \prod_{i,j,k} \operatorname{Vect}(U_{i} \cap U_{j} \cap U_{k})^{\simeq}$$

The third arrows is the cocycle condition.

Example 1.8. $X \mapsto \operatorname{Perf}(X)^{\sim}$.

Problem. Now we have derived/higher automorphisms. This comes from the fact that we have Ext groups.

Solution. Consider the ∞ -groupoid of perfect complexes.

 $\operatorname{grpd} \longrightarrow 2\operatorname{grpd} \longrightarrow \cdots \longrightarrow \infty - \operatorname{grpd} \simeq \operatorname{Spc}$

Theorem 1.9. $X \mapsto \operatorname{Perf}(X)^{\simeq}$ is a sheaf of ∞ – grpd. That is, we have a cosimplicial diagram indexed on Δ .

$$\operatorname{Perf}(X)^{\simeq} \longrightarrow \prod_{i} \operatorname{Perf}(U_{i})^{\simeq} \longrightarrow \prod_{i,j} \operatorname{Perf}(U_{i} \cap U_{j})^{\simeq} \Longrightarrow \prod_{i,j,k} \operatorname{Perf}(U_{i} \cap U_{j} \cap U_{k})^{\simeq} \cdots$$

Theorem 1.10. (Thomason). $X \mapsto K(X)$ is a sheaf of ∞ – grpd (over qcqs schemes).

Corollary 1.11. (Mayer-Vietoris). $X = U \cup V$, Zariski cover.

$$\cdots \xrightarrow{\partial} K_n(X) \longrightarrow K_n(U) \oplus K_n(V) \longrightarrow K_n(U \cap V) \xrightarrow{\partial} K_{n-1}(X) \longrightarrow \cdots$$

Remark 1.12. Also work for algebraic spaces - we have Nisnevich coverings in this case. This is referred to as *Scallop decompositions* in Lurie.

2 ∞ -categories

[Cis20], [Lura, 1].

Definition 2.1. (Simplicial sets). We have the following category.

 $\Delta \coloneqq \{[n] : n \in \mathbb{N}\} \quad [n] = \{0, 1, \dots, n\}$

 $\operatorname{Hom}_{\Delta}([m], [n]) =$ order-preserving maps

A simplicial set is a functor $X : \Delta^{\mathrm{op}} \to \text{Set}$. This is equivalent to the data

$$(X_n)_{n \in \mathbb{N}}$$
$$\forall \alpha : [m] \to [n] \text{ in } \Delta$$
$$\alpha^* : X_n \to X_m \text{ functorially }.$$

2.2. Notation. $n \in \mathbb{N}$. $0 \le i \le n$.

- $\delta_n^i: [n-1] \hookrightarrow [n]$. The injective map which "skips" *i*.
- $\sigma_n^i:[n+1]\to [n].$ The surjective map which "doubles" i.
- **2.3.** If $X \in \text{Set}_{\Delta}$ (the category of simplicial sets). We have induced maps
 - face maps. $d_n^i: X_n \to X_{n-1}$ induced by δ_n^i .
 - degenracy maps. $s_n^i: X_n \to X_{n+1}$ induced by σ_n^i .

Example 2.4. If X is a set, $c(X) \in Set_{\Delta}$ is constant simplicial set. The functor

$$\operatorname{Set} \xrightarrow{c} \operatorname{Set}_{\Delta}$$

is fully faithful.

Example 2.5. The standard simplex. $\Delta^n \in \text{Set}_\Delta$. The simplicial set represented by [n].

$$\Delta_i^n \coloneqq \operatorname{Hom}_\Delta([i], [n])$$

Example 2.6. $\partial \Delta^n$.

$$\partial^k \Delta^n \subset \Delta^n \text{ image of } \Delta^{n-1} \to \Delta^n, \text{ kth face of } \Delta^n$$

 $\partial \Delta^n \coloneqq \bigcup_k \partial^k \Delta^n \text{ boundary of } \Delta^n$

Example 2.7. $\Lambda_k^n \subset \Delta^n$ is union of $\partial^i \Delta^n$, $j \neq k$. ($\partial \Delta^n$ minus kth face) horns of Δ^n .

2.1 Categoires as simplicial sets

2.8. C a category. $N(C) \in \text{Set}_{\Delta}$, nerve of C.

 $N(C)_n \coloneqq \operatorname{Fun}_{\operatorname{Cat}}([n], C) = \{c_0 \to \dots \to c_n \text{ strings of morphisms }\}$

- $N(C)_0$ = objects of C.
- $N(C)_1$ =morphisms of C.
- $N(C)_2$ =diagrams $C_0 \rightarrow C_1 \rightarrow c_2$ in C.
- …
- N(C) has all info about C.

2.9. $C \mapsto N(C)$ defines a *fully faithful* functor

 $N: \operatorname{Cat} \to \operatorname{Set}_\Delta$

Moreover there is a left adjoint $\tau : \operatorname{Set}_{\Delta} \to \operatorname{Cat}$.

2.10. Let $X \in \text{Set}_{\Delta}$.

- objects of X: 0-simplices. $\Delta^0 \to X$
- morphisms of X: 1- simplices. $\Delta^1 \to X$.

• source/target of $f \in X_1$.

$$X_1 \xrightarrow[d_1^1]{d_1^1} X_0$$
$$s(f) \coloneqq d_1^1(f), t(f) = d_1^0(f)$$

• *identity* of $x \in X_0$. $s_0^0 : X_0 \to X_1$, $x \mapsto id_x$.

Definition 2.11. $X \in \text{Set}_{\Delta}$ is a *compsable par* in X, is a map

$$\Lambda_1^2 \to X$$

a *composition* of a composable pair is a lift

$$\begin{array}{ccc} \Lambda_1^2 & \stackrel{\sigma}{\longrightarrow} X \\ \downarrow & \stackrel{\sigma}{\xrightarrow{\sigma}} \\ \Delta^2 \end{array}$$

2.12. $X \in \text{Set}_{\Delta}$ is in the essential image of $N : \text{Cat} \to \text{Set}_{\Delta}$ iff

$$\operatorname{Hom}(\Delta^n, X) \to \operatorname{Hom}(\Lambda^n_k, X)$$

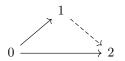
is bijective for all $n \ge 2$, 0 < k < n. In particular composition exists and is unique.

2.2 Groupoids and Kan complexes

Remark 2.13. C is a groupoid iff morphisms in C are invertible iff $N(C) \in \text{Set}_{\Delta}$ satisfies the following:

$$\operatorname{Hom}(\Delta^n, N(C)) \xrightarrow{\simeq} \operatorname{Hom}(\Lambda^n_k)$$

for all $n \ge 2, \ 0 \le k \le n$. The corner cases allow us to construct inverses:



Definition 2.14. (Kan complex). $X \in \text{Set}_{\Delta}$ is a *Kan complex* iff

$$\operatorname{Hom}(\Delta^n, X) \xrightarrow{\operatorname{res}} \operatorname{Hom}(\Lambda^n_k, X)$$

is surjective $\forall 0 \le k \le n$. "Kan complex= generalized groupoids where compositions and inverses exist but not uniquely".

Theorem 2.15. (Milnor). There is an equivalence

{ homotopy cat. of CW cplx. }
$$\xrightarrow{\simeq}$$
 { homotopy cat. of Kan cplx. }

which is given by

$$X \mapsto \operatorname{Sing}(X)_{\bullet} \in \operatorname{Set}_{\Delta}$$

 $\operatorname{Sing}(X)_n \coloneqq \{\Delta_{\operatorname{Top}}^n \to X \text{ continuous maps } \}$

Composition in a Kan complex corresponds to composition of paths in a space.

2.3 ∞ -categories as weak Kan complex

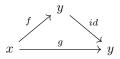
2.16. groupoid :: category. Kan cplx:: ???

Definition 2.17. (Boardman-Vogt) is a weak Kan complex a.k.a quasi-category iff

 $\operatorname{Hom}(\Delta^n, X) \xrightarrow{\operatorname{res}} \operatorname{Hom}(\Lambda^n_k, X)$

is surjective for all $n \ge 2$, 0 < k < n.

2.18. Construction. X be a weak Kan complex. $f, g: x \to y$. A homotopy $f \simeq g$ is a 2-simplex $\Delta^2 \xrightarrow{\sigma} X$.



The homotopy category hX has obbjects 0-simplices. Morphisms homotopy classes of x to y.

Definition 2.19. X wkc. $f: X \to y$ is an *isomorphism* iff following equivalent holds

- f invertible.
- f isomorphism hX.

X is an ∞ – grpd iff every mopphism in X is an iso.

Remark 2.20. There is unit map $X \rightarrow N\tau X$.

Theorem 2.21. (Joyal). X wkc. Tfae

- X is a Kan complex.
- X is an ∞ grpd.

Example 2.22. (Cat. theory of wkc).

- $\operatorname{Fun}(X, Y) = \operatorname{Hom}(X, Y)$ internal hom of $\operatorname{Set}_{\Delta}$.
- Map_X(s, y). X is a wkc. $x, y \in X_0$, we can construct an ∞ grpd of maps

• adjunctions.

Definition 2.23. An ∞ -category(platonic concept) is a weak Kan complex (shadow).

2.4 ∞ -category of Kan complexes

2.24. Construction. Kan (large) simplicial sets. ($\neq N$ (Cat.of Kan. complexes).

- Kan₀ = {small Kan complexes}
- Kan₁ = {maps of Kan complexes}.
- Kan₂ = { $(X, Y, Z, f, g, h, \sigma)$: $f : X \to Y, g : Y \to Z, h : X \to Z, \sigma \in Fun(X, Z), d_0^1 \sigma = g \circ f, d_0^2 = h$ }
- …
- Kan_n = tuples of Kan complexes $X_0 \rightarrow X_n, X_i \rightarrow X_j$ "compatible up to coherent homotopy".

Definition 2.25. There is a fully faithful functor of ∞ -categories

 $\mathsf{Set} \hookrightarrow \mathsf{Kan}$

An object $X \in \text{Kan}$ is in the ess. image iff X is homotopy equivalent to a constnat simplicial set iff $\pi_i(X) \simeq 0$ for all i > 0.

3 Animated modules

[ARV10], [ČS19, 5], [Lura, 5.5.8].

3.1 Algebraic categories

Definition 3.1. C category. C is *algebraic* if there exists an essentially small full subcategory $F_C \subset C$, admitting finite coproducts, which extends to an equivalence

$$\operatorname{Fun}_{\pi}(F_{\mathcal{C}}^{op},\operatorname{Set}) \to \mathcal{C}$$

where lhs denotes product preserving functors.

Example 3.2. The category Set is algebraic, with $F_{\mathcal{C}}$ = Fin. The category of finite sets.

$$\operatorname{Set} \simeq \operatorname{Fun}_{\pi}(\operatorname{Fin}^{op}, \operatorname{Set})$$

The forward map is the Yoneda embedding.

$$X \mapsto (Y \mapsto \operatorname{Hom}(Y, X))$$

Conversely, given F in rhs, we have the data of

- $F_0 \simeq \{*\}$
- $F_n := F(\{1, \dots, n\}) \simeq F_1^n =: (F\{1\})^n$ for all n.
- $\{1,\ldots,n\} \rightarrow \{1,\ldots,m\}$ induces a map

$$X_m \simeq F_m \to F_n \simeq X_n$$

In other words, all the data is encoded by $X = F_1 \in Set$. Hence, the inverse map is given by

 $F \mapsto F_1$

- Objects are $n \in \mathbb{N}$.
- Morphisms are

$$\operatorname{Hom}_{F_{Ab}}(m,n) = \operatorname{Hom}_{Ab}(\mathbb{Z}^{\oplus m},\mathbb{Z}^{\oplus n}) \simeq \operatorname{Mat}_{n \times m}(\mathbb{Z})$$

• composition is identified with matrix multiplication.

We have

$$Ab \simeq Fun_{\pi}(F_{Ab}^{op}, Set)$$

Object of rhs is identified with data of

- $F_0, F_1, \ldots \in$ Set.
- $F_0 \simeq \{*\}, F_n \simeq F_n^{\times n}.$
- $\phi \in \operatorname{Mat}_{n \times m}(\mathbb{Z}), F_{\phi} : F_m \to F_n.$

This implies we can define the underlying set as $G = F_1 \in \text{Set}$.

• Note the operation maps $G^{\times n} \to G$ corresponds to $n \times 1$ matrices.

$$\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$

corresponds with operation of forming a linear combination with coefficients a_i .

$$(x_1,\ldots,x_n)\mapsto \sum a_i\cdot x_i$$

• addition

$$\begin{bmatrix} 1\\1 \end{bmatrix} \Leftrightarrow (x_0, x_1) \mapsto x_1 + x_2$$

- zero. [] empty $(0 \times 1$ -matrix yields $\{*\} \xrightarrow{0} G$.
- additive inverse. $[-1] \Leftrightarrow G \to G$

Remark 3.4. There is a canonical choice of $F_{\mathcal{C}}$, namely the full subcategory of *compact projective* objects.

- $X \in \mathcal{C}$ is *compact* iff $\operatorname{Hom}_{\mathcal{C}}(X, -)$ preserves filtered colimits. (thought of as poset)
- $X \in \mathcal{C}$ is *projective* iff preservers reflexive coequalizers. (thought of as equivalence relation).

Example 3.5. In Set, $X \in$ Set is cpt. proj. iff X is finite. In Ab, $X \in$ Ab is cpt. proj. iff X is f.g. free.

3.6. Moreover, if \mathcal{C} is algebraic then $\operatorname{Fun}_{\pi}(F_{\mathcal{C}}^{op}, \operatorname{Set}) \simeq \mathcal{C}$ is the free completion of $F_{\mathcal{C}}$ by filtered colimits and reflexive coequalizers.

Free completion. For every category \mathcal{D} with filtered colimits + reflexive coequalizers, there is an equivalence given by restriction

$$\operatorname{Fun}'(\mathcal{C},\mathcal{D}) \xrightarrow{\simeq} \operatorname{Fun}(F_{\mathcal{C}},\mathcal{D})$$

where the lhs consists of functors $F: \mathcal{C} \to \mathcal{D}$ preserving filtered colimits+ reflexive coequalizers.

3.7. Reminder. A *reflixve pair* in C is a diagram

$$X \xrightarrow[g]{f} y$$

such that fs = gs.

3.8. Reflexive coequalizers are colimits induced by reflexive pairs. These generalize quotients by equivalence relations. For example $R \subset X \times X$

yields a reflexive pair

 $R \xrightarrow{\longrightarrow} X$

Definition 3.9. \mathcal{C} an ∞ -category. $X : \Delta^{op} \to \mathcal{C}$ a simplicial diagram in \mathcal{C} . The colimit of X is denoted

$$|X_{\bullet}| \coloneqq \lim_{[n] \in \Delta^{op}} X_n$$

$$X_1 \xleftarrow{} X_0 \longrightarrow |X_\bullet|$$

and is called the *geometric realization* of X. We should think of these as higher cat. version of equivalence relations.

Definition 3.10. \mathcal{C} an algebraic category. An *animation* of \mathcal{C} is an ∞ -cat $\operatorname{Anim}(\mathcal{C})$ equipped with a f.f functor $F_{\mathcal{C}} \to \operatorname{Anim}(\mathcal{C})$ such that for all $\mathcal{D} \infty$ -cat (admitting fil. colim + geo. realization.)

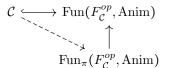
 $\operatorname{Fun}'(\operatorname{Anim}(\mathcal{C}),\mathcal{D}) \xrightarrow{\simeq} \operatorname{Fun}(F_{\mathcal{C}},\mathcal{D})$

is an equivalence. The lhs consists of $F : \operatorname{Anim}(\mathcal{C}) \to \mathcal{D}$ preserving filt. colimit + geo. realizations.

• The ∞ -category of anime is an animation of the category of sets. We denote it by Anim.

Theorem 3.11. (Quillen, Lurie).

- The f.f. functor Fin \hookrightarrow Kan exhibits the ∞ -cat Kan as an ∞ -category of anime.
- \mathcal{C} an algebraic category. Then the Yoneda embedding



induces a factorization as depicted, and exhibits the target as an animation of C. i.e. Fun(F_{C}^{op} , Anim) is a model of animation for any algebraic category C. This is proven in [Lura, 5.5.8].

Definition 3.12. Recall. Set \hookrightarrow Kan \simeq Anim. An anima. $X \in$ Anim is *discrete* if it is isoo. to an object in the essential image.

If \mathcal{C} is an algebraic category, an object $X \in \operatorname{Anim}(\mathcal{C})$ is *discrete* if

$$X: F_{\mathcal{C}}^{op} \to \operatorname{Anim}$$

factors through Set \rightarrow Anim. iff the *underlying anima* of X is discrete. We denote this category

 $\operatorname{Anim}^{\heartsuit} \subset \operatorname{Anim}$

3.13. Claim.

1. The assignment

$$(F_{\mathcal{C}}^{op} \to)$$
 Set $\mapsto (F_{\mathcal{C}}^{op} \to$ Set \hookrightarrow Anim $)$

defines a ff functor

$$\mathcal{C} \hookrightarrow \operatorname{Anim}(\mathcal{C})$$

with ess. image $\operatorname{Anim}(\mathcal{C})^{\heartsuit}$.

2. The functor $\mathcal{C} \hookrightarrow \operatorname{Anim}(\mathcal{C})$ admits left adjoint

$$\pi_0:\operatorname{Anim}(\mathcal{C})\to\mathcal{C}$$

given by composition with

$$\pi_0$$
: Anim \rightarrow Set

the connected component functor.

3.14. Construction. (Underlying anima). Assume $F_{\mathcal{C}}$ is generated under finite coproducts by one object, 1. $X \in \operatorname{Anim}(\mathcal{C}).$

$$X^{\circ} := X(1) \in \operatorname{Anim}, \quad X(1) = \operatorname{Map}_{\operatorname{Anim}(\mathcal{C})}(1, X)$$

3.2 Animated modules

3.15. A a comm. ring. $F_A \coloneqq \{A^{\oplus n} : n \in \mathbb{N}\} \subset \operatorname{Mod}_A$ consists of f.g. free A-module.

Definition 3.16. An animated A-module is a product preserving functor

 $M: (F_A)^{op} \to \operatorname{Anim}$

Remark 3.17. Harry. There is an equivalence of categories between the animated A-modules defined above and those with domain the compact projective objects of Mod_A .

3.18. Notation. $\mathcal{D}(A)_{\geq 0} \coloneqq \operatorname{Anim}(\operatorname{Mod}_A)$. This will be shown to be equivalent to the usual ∞ -category of connective chain complex.

3.19. $M \in \mathcal{D}(A)_{\geq 0}$ consists of

- $M_n \in \text{Anim for all } N \in \mathbb{N}.$
- $M_m \to M_n$ for all $\varphi : \operatorname{Mat}_{m \times n}(A)$.
- $\varphi \in \operatorname{Mat}_{m \times n}(A), \psi \in \operatorname{Mat}_{l \times m}(A)$ a homotopy between $(M_{\psi\varphi} : M_l \to M_n)$ and $(M_l \xrightarrow{M_{\psi}} M_n \xrightarrow{M_{\varphi}} M_n)$
- + a homotopy coherent system of compatibilities between homotopies.

subject to the condition

 $M_n \xrightarrow{\simeq} M^{\times n}$

for all n and

 $M_0 \simeq *$

The data of relevance

• $M^\circ = M_1 \in \text{Anim}.$

• Operations

$$(M^{\circ})^{\times n} \to M^{\circ}$$

corresponds to $\varphi \in \operatorname{Mat}_{n \times 1}(A)$.

 $\bullet\,$ action of A on M°

 $A \to \operatorname{End}(M^{\circ})$

$$A \simeq \operatorname{Mat}_{1 \times 1}(A) = \operatorname{Hom}_{F_A}(1, 1) \xrightarrow{M} \operatorname{Hom}_{\operatorname{Anim}}(M_1, M_1) \simeq \operatorname{End}(M^{\circ})$$

• Assoc + commutativity up to coherent homotopy. For all $x, y, z \in M$ ($\Leftrightarrow x, y, z : * \to M^0$). This follows from the diagram

$$\begin{array}{ccc} M^{\circ} \times M^{\circ} \times M^{\circ} & \xrightarrow{a \times \mathrm{id}} & M^{\circ} \times M^{\circ} \\ & & & & \downarrow^{a} \\ M^{\circ} \times M^{\circ} & \longrightarrow & M^{\circ} \end{array}$$

3.3 Derived functors

3.20. The idea is to resolve by simplicial diagrams.

3.21. Construction. (Left derived functors). $F : \mathcal{C} \to \mathcal{D}$ functor between algebraic categories. If F preserves filt. colimits + refl coeq's, then this induces

$$\mathbb{L}F:\operatorname{Anim}(\mathcal{C})\to\operatorname{Anim}(\mathcal{D})$$

unique functor such that

• $\mathbb{L}F$ preserves filt colimit + geo. realization.

$$F_{\mathcal{C}} \longleftrightarrow \mathcal{C} \xrightarrow{F} \mathcal{D} \longrightarrow \operatorname{Anim}(\mathcal{D})$$
$$\int_{\operatorname{Anim}(\mathcal{C})} \mathcal{D} \xrightarrow{F} \mathcal{D} \xrightarrow{F} \mathcal{D} \xrightarrow{F} \mathcal{D}$$

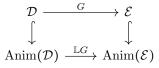
- For all $X \in \operatorname{Anim}(\mathcal{C}), \pi_0 \mathbb{L}F(X) \simeq F(\pi_0 X) \in \mathcal{C}.$
- If F preserves fin. coproduct then $\mathbb{L}F$ does too.

Definition 3.22. $\mathbb{L}F$ is the *left derived* functor of F.

3.23. In the classcal theory left derived functors don't compose well.

Proposition 3.24. $F : \mathcal{C} \to \mathcal{D}, G : \mathcal{D} \to \mathcal{E}$ functors between alg. cats. preserving filt. colimit+ reflex. coeq. Assume one of the following holds

- 1. F sends $F_{\mathcal{C}} \to F_{\mathcal{D}} \subset \mathcal{D}$. (More generally sends $F_{\mathcal{C}}$ to filt. colimits of objects in $F_{\mathcal{D}}$.)
- 2. $\mathbb{L}G$: Anim $(\mathcal{D}) \to$ Anim (\mathcal{E}) preserves discrete objects. i.e. a diagram



More generally for all $X \in F_{\mathcal{C}}$, $\mathbb{L}G(F(X))$ is discrete in Anim (\mathcal{D}) .

Then, there is a canonical equivalence

$$\mathbb{L}G \circ \mathbb{L}F \simeq \mathbb{L}(G \circ F) : \operatorname{Anim}(\mathcal{C}) \to \operatorname{Anim}(\mathcal{E})$$

Example 3.25. $\varphi : A \to B$ ring homomorphism

$$\varphi^*: \operatorname{Mod}_A \to \operatorname{Mod}_B, \quad M \mapsto M \otimes_A B$$

This implies the existence of the functor

$$\mathbb{L}\varphi^*: \mathcal{D}(A)_{\geq 0} \to \mathcal{D}(B)_{\geq 0}, \qquad \begin{array}{c} F_A & \xrightarrow{-\otimes_A B} & F_B \\ & & \downarrow & & \downarrow \\ & & & \downarrow \\ \mathcal{D}(A)_{\geq 0} & \xrightarrow{\mathbb{L}\varphi^*} & \mathcal{D}(B)_{\geq 0} \end{array}$$

which preservers colimits. Further

$$\pi_0 \mathbb{L} \varphi^* M \simeq \varphi^* \pi_0 M$$

next time we will identify this functor as

 $-\otimes^{\mathbb{L}}_{A}B = \mathbb{L}\varphi^{*}$

4 Nonconnective animated modules

[Lurb, 1], [Lurc, c].

4.1 Suspensions and loops spaces

Definition 4.1. \mathcal{C} an ∞ -category with *terminal object* pt $\in \mathcal{C}$, Map_{\mathcal{C}}(X, pt) is a contractible anima. $f : X \to Y$ a morphism in \mathcal{C} .

• $\operatorname{cofib}(f) = \operatorname{cofiber} \operatorname{of} f$ is the pushout

$$\begin{array}{ccc} X & & \stackrel{f}{\longrightarrow} Y \\ \downarrow & & \stackrel{\mathsf{r}}{\longrightarrow} & \downarrow \\ \mathrm{pt} & \longrightarrow \mathrm{cofib}(f) \end{array}$$

• $\operatorname{fib}_y(f) = \operatorname{fiber} \operatorname{of} f$ at any "point" $y : \operatorname{pt} \to Y$, is the pullback square

$$\begin{aligned} \operatorname{fib}_y(f) & \longrightarrow X \\ & \downarrow & \downarrow^f \\ & \operatorname{pt} & \xrightarrow{y} & Y \end{aligned}$$

Example 4.2. Let C be an ordinary category (viewed as an ∞ -category), then

$$\operatorname{cofib}(f) \simeq \operatorname{coker}(f)$$

$$\operatorname{fib}_y(f) \simeq \ker(f)$$

Example 4.3. C an ∞ -cat. $X \in C$, object. Then

- The suspension is
- The loop space $\Omega_x(X)$

 $\operatorname{fib}_x(\operatorname{pt} \xrightarrow{x} X)$

 $\Sigma X \simeq \operatorname{cofib}(X \to \operatorname{pt})$

In otherwords we have the cocartesian and cartesian squares respectively.

$$\begin{array}{cccc} X & \longrightarrow & \mathrm{pt} & \Omega_x(X) & \longrightarrow & \mathrm{pt} \\ \downarrow & & \downarrow & & \downarrow & & \downarrow_x \\ \mathrm{pt} & \longrightarrow & \Sigma X & & \mathrm{pt} & \xrightarrow{x} & X \end{array}$$

Remark 4.4. In ordinary category $\Sigma X = \text{pt}, \Omega_x(X) = \text{pt}$ for all $x, x : \text{pt} \to X$. **Example 4.5.** In the Kan \simeq Anim

$$\Sigma \varnothing \simeq S^0, \quad S^{n+1} \simeq \Sigma S^n, \quad \forall n \ge 0$$

$$\begin{array}{c} \varnothing \longrightarrow \mathrm{pt} \\ \downarrow & \ulcorner & \downarrow \\ \mathrm{pt} \longrightarrow \mathrm{pt} \sqcup \mathrm{pt} \end{array}$$

Remark 4.6. Point of a loop space $\Omega_x(X)$ is equivalent to

pt

$$\Omega_x(X) \longrightarrow pt$$

 $\downarrow \qquad \downarrow^x$
 $pt \xrightarrow{x} X$

corresponding to a commutative square

$$\begin{array}{c} \operatorname{pt} & \xrightarrow{\sigma_1} & \operatorname{pt} \\ \downarrow^{\sigma_2} & \downarrow^x \\ \downarrow^x & \downarrow^x \\ \operatorname{pt} & \xrightarrow{x} & X \end{array}$$

which requires specifying a *further data* of homotopy. i.e. have to specify 2 simplicies σ_1, σ_2 up to which the triangle commute

$$\Delta^1 \times \Delta^1 \to \mathcal{C}$$

This data is equivalent

$$(\operatorname{pt} \xrightarrow{x} X) \simeq (\operatorname{pt} \xrightarrow{x} X) \quad (\sigma_1)$$

 $(\operatorname{pt} \xrightarrow{x} X) \simeq (\operatorname{pt} \xrightarrow{x} X) \quad (\sigma_1)$

which is equivalent to loop in X based at $x \in X$.

Remark 4.7. Harry. Can also think of loop space as X(x, x) the endomorphism space of x, which makes sense even if X were an ∞ -cat.

4.2 Infinite loop space

Definition 4.8. 1. A pointed anime pair $(X, x_0) X \in \text{Anim } x_0 : \text{pt} \to X$ (i.e. pointed Kan complex).

- 2. Anim_{*} = { ∞ -cat of pointed anime}.
- 3. (X, x_0) is *n*-connective if $\pi_i(X, x_0) \simeq *$ for all i < n.

Example 4.9. Every $X \in \text{Anim}_*$ is 0-connective. $X \in \text{Anim}_*$ is 1-connective iff X is connected iff $\pi_0 X \simeq 0$. **Theorem 4.10.** (1-fold loop spaces).

• A 1-fold loop space is a pair (X_0, X_1) of pointed anime together with an isomorphism,

```
X_0 \simeq \Omega(X_1)
```

- X_0 is the underlying anima, and X_1 is the delooping of X_0 .
- (X_0, X_1) is connective if X_i is *i*-connective for all *i*, iff, X_1 is 1-connective.

Claim.

1. For every $X \in Anim_*$, ΩX admits an \mathbb{E}_1 -group structure. In particular the functor

 $\{1\text{-fold loop spaces}\} \rightarrow \text{Anim}_*$

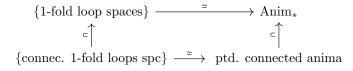
factors through $\{\mathbb{E}_1\text{-groups}\} \xrightarrow{\text{forget}} \text{Anim}_*$.

2. Restricted to the full subcategory of *connective* loop space, this induces an equivalence of categories

{connec. 1-fold loops spc} $\xrightarrow{\simeq}$ { \mathbb{E}_1 groups}

This implies any \mathbb{E}_1 -group on $X \in \text{Anim}_*$ gives rise to a unique delooping BX, BX is 1-connective pointed anime $\Omega BX \simeq X$.

Remark 4.11.



 $(X_0, X_1) \longmapsto X_1$

Definition 4.12. A spectrum X is a sequence of pointed anime $X = (X_0, X_1, ...)$ together with isomorphisms $X_n \simeq \Omega_{n+1}$ for all $n \ge 0$.

• X is an *infinite delooping* of X_0 .

Definition 4.13. A spectrum X is *connective* if X_n is *n*-connective pointed anima. (for all $n \ge 0$.)

- 1. Spt = ∞ -cat of spectra.
- 2. $\operatorname{Spt}_{\geq 0}$ full subccategory of connective spectra.

3.

$$\operatorname{Spt} \simeq \lim (\cdots \xrightarrow{\Omega} \operatorname{Anim}_* \xrightarrow{\Omega} \operatorname{Anim}_*)$$

4.

$$\operatorname{Spt}_{\geq 0} \simeq \varprojlim (\cdots \xrightarrow{\Omega} (\operatorname{Anim}_{*})_{\geq 1} \xrightarrow{\Omega} (\operatorname{Anim}_{*})_{\geq 0})$$

Remark 4.14. Projections

$$\operatorname{Spt} \xrightarrow{\Omega^{\infty^{-n}}} \operatorname{Anim}_* (X_0, X_1, \ldots) \mapsto (X_n)$$

Theorem 4.15. (infinite loop space machine). Boardman-Vogt, Segal, Peter may, Lurie.

1. $X \in \text{Spt}, \ \Omega^{\infty}X \in \text{Anim}_{*}, \text{ admits an } \mathbb{E}_{\infty} - \text{grp structure.}$

$$\Omega^{\infty}: Spt \to \mathbb{E}_{\infty} - grp$$

2. When restricted to $\operatorname{Spt}_{\geq 0},$ we have an equivalence

$$\operatorname{Spt}_{\geq 0} \hookrightarrow \operatorname{Spt} \xrightarrow{\Omega^{\infty}} \mathbb{E}_{\infty} - \operatorname{grp}$$

4.3 Stable ∞ -categories

Definition 4.16. \mathcal{C} ∞-category is *stable* if

- admits finite limits and a zero object (terminal + initial).
- $\Omega: \mathcal{C} \to \mathcal{C}$ is an equivalence.

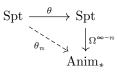
$$\Sigma \Omega \simeq \mathrm{id}, \quad \Omega \Sigma \simeq \mathrm{id}$$

These behave like shift functors in a triangulated category.

Theorem 4.17. Spt is a stable ∞ -category.

Proof. (Sketch). Looking at

The inverse is given by a collection of compatible map



1

$$\Omega \circ \theta_n \simeq \theta_{n+1}, \quad \theta_n \coloneqq \Omega^{\infty - n}, \Omega \circ \Omega^{\infty - n - 1} \simeq \Omega^{\infty - n}$$

This implies $\theta \simeq \Sigma$.

¹Check the maps here

Proposition 4.18. C an ∞ -cat, tfae.

- \mathcal{C} is stable.
- \mathcal{C} admits finite colimits + zero objt, $\Sigma : \mathcal{C} \to \mathcal{C}$ is equivalence.
- C admits finite colimits + finite limits + zero object and any commutative square is cartesian iff it is cocartesian.

Definition 4.19. An *exact triangle* in a stable category C is a co/cartesian diagram

$$\begin{array}{ccc} X & \longrightarrow & Y \\ \downarrow & & \downarrow \\ 0 & \longrightarrow & Z \end{array}$$

0 is a zero object. This is denoted

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

Warning. Have to specify a null homotopy $g \circ f \simeq 0$.

Remark 4.20. The homotopy category $h(\mathcal{C})$ is triangulated.

- $h(\mathcal{C} \text{ is additive.})$
- $\pi_0 \operatorname{Map}_{\mathcal{C}}(X, Y)$ are abelian groups. Hence

 $\pi_0 \operatorname{Map}_{\mathcal{C}}(X, Y) \simeq \Omega \operatorname{Map}_{\mathcal{C}}(X, Y) \simeq \pi_1 \operatorname{Map}_{\mathcal{C}}(X, Y)$

Similarly

$$\pi_0 \operatorname{Map}_{\mathcal{C}}(\Sigma^2 X, Y) \simeq \pi_2(\operatorname{Map}_{\mathcal{C}}(X, Y))$$

is an abelian group. But we have $X \simeq \Sigma^2 \Omega^2 X$ since \mathcal{C} is stable.

- $[n] \coloneqq \Sigma^n, \Omega^n \text{ if } n > 0, \text{ and } < 0 \text{ respectively.}$
- exact triangles coming from $\mathcal{C} \to h\mathcal{C}$.

4.4 Animations of additive categories

4.21. C is algebraic category. If C is additive, then

$$\mathcal{C} \simeq \operatorname{Fun}_{\pi}(F_{\mathcal{C}}^{op}, \operatorname{Ab})$$

Idea. $X \in \mathcal{C}$ iff $X : F_{\mathcal{C}} \to \text{Set}$ automatically takes value in Ab.

4.22. In particular $X \in C$ if it is reprentable, In general, X is built out of filt. colimits and reflexive coequalizers of representable objects.

Proposition 4.23. C additive algebraic ategory.

$$\operatorname{Anim}(\mathcal{C}) \simeq \operatorname{Fun}_{\pi}(F_{\mathcal{C}}^{op}, \operatorname{Spt}_{>0})$$

In particular this is ff. embedding

$$\operatorname{Anim}(\mathcal{C}) \hookrightarrow \operatorname{Fun}_{\pi}(F_{\mathcal{C}}^{op}, \operatorname{Spt}) =: \operatorname{Anim}^{\operatorname{nc}}(\mathcal{C})$$

with stable target and with ess. image closed under finite colimits and extensions.

Proof. (Sketch). Use the infinite loop space machine.

- Every $X \in \operatorname{Anim}(\mathcal{C})$ iff $X : F_{\mathcal{C}}^{op} \to \operatorname{Anim}$ actually takes values in \mathbb{E}_{∞} grp. This is done by reducing to the representable objects.
- $\mathbb{E}_{\infty} \operatorname{grp} \simeq \operatorname{Spt}_{\geq 0} \hookrightarrow \operatorname{Spt}$.

Remark 4.24. Anim^{nc}(\mathcal{C}) $\simeq \varprojlim (\cdots \xrightarrow{\Omega} \operatorname{Anim}(\mathcal{C}) \xrightarrow{\Omega} \operatorname{Anim}(\mathcal{C}))$

Definition 4.25. A nonconnective animated A-module is an object in $\operatorname{Anim}^{\operatorname{nc}}(\mathcal{C})$, which we denote

 $\mathcal{D}(A) := \operatorname{Anim}^{\operatorname{nc}}(\operatorname{Mod}_A) \qquad \text{stable}$ \subset $\mathcal{D}(A)_{\geq 0} = \operatorname{Anim}(\operatorname{Mod}_A) \qquad \text{prestable}$ \subset $\mathcal{D}(A)_{\geq 0}^{\circ} = \operatorname{Mod}_A \qquad \text{abelian}$

5 Sheaves

5.1 Addendum to Derived functors

5.1. Recall $\phi : A \to B$ a ring homo.

$$\operatorname{Mod}_A \xrightarrow{\phi^*} \operatorname{Mod}_B$$

5.2. ϕ_* admits a right adjoint, coextension of scalars.

$$M \in \operatorname{Mod}_A \mapsto \operatorname{Hom}_A(B, M) \in \operatorname{Mod}_B$$

This implies ϕ_* preserves small colimits. Inducing left derived functor,

$$\mathbb{L}\phi_*: \mathcal{D}(B)_{\geq 0} \to \mathcal{D}(A)_{\geq 0}$$

which commutes with sifted colimits and (co)finite products hence all colimits. Extends

 $F_B \longrightarrow \operatorname{Mod}_B \longrightarrow \operatorname{Mod}_A \longrightarrow \mathcal{D}(A)$

Proposition 5.3. The derived functor satisfies

- 1. $\mathbb{L}\phi_*$ preserves limits and colimits.
- 2. $\mathbb{L}\phi_*$ preserves underlying anima
- 3. $\mathbb{L}\phi_*$ conservative (detects isos).

Remark 5.4. 2 implies $\mathbb{L}\phi_*$ preserves and detects discreteness.

Proof. (of 2). Let $N \in \mathcal{D}(B)_{\geq 0}$.

$$\mathbb{L}\phi_*(N)^{\circ} \simeq \operatorname{Map}_{\mathcal{D}(A)_{\geq 0}}(A, \mathbb{L}\phi_*(N))$$
$$\simeq \operatorname{Map}_{\mathcal{D}(B)_{\geq 0}}(\mathbb{L}\phi^*(A), N)$$
$$\simeq \operatorname{Map}_{\mathcal{D}(B)_{\geq 0}}(B, N)$$
$$\simeq N^{\circ}$$

Note that for $A \in F_A$,

$$\mathbb{L}\phi^*(A) \simeq \phi^*(A) \simeq B$$

(of 3). Follows from 2. and the fact

$$\mathcal{D}(A)_{\geq 0} \to \operatorname{Anim}$$

 $M \mapsto M^{\circ}$

is conservative. This is because F_A is generated by A under finite coproducts, see 5.5.

5.5. Conservativity of $M \mapsto M^{\circ}$. Let $\alpha : M \to N$ in $\mathcal{D}(A)_{\geq 0}$. Assume that $M^{\circ} \xrightarrow{\simeq} N^{\circ}$ iso. in Anim. We are given $M : F_A^{op} \to \text{Anim}$. It suffices to show that

$$M(A^{\oplus n}) \xrightarrow{\alpha} N(A^{\oplus n})$$

iso for all n. But this is equivalent to

$$M(A)^{\times n} \xrightarrow{\simeq} N(A)^{\times n}$$

5.6. Notation. $\phi_* = \mathbb{L}\phi_* : \mathcal{D}(B)_{\geq 0} \to \mathcal{D}(A)_{\geq 0}$.

5.7. Construction. $-\otimes^{\mathbb{L}}-.$ $\mathbb{R}\underline{\mathrm{Hom}}$ right adjoint bifunctor to

$$-\otimes^{\mathbb{L}} -: \mathcal{D}(A)_{\geq 0} \times \mathcal{D}(A)_{\geq 0} \to \mathcal{D}(A)_{\geq 0}$$

which is the left derived functor of

$$-\otimes -: \operatorname{Mod}_A \times \operatorname{Mod}_A \to \operatorname{Mod}_A$$

Remark 5.8. $\phi_*\phi^*: (-) \otimes_A B$ as endofunctor of Mod_A This implies

$$\mathbb{L}\phi_*\mathbb{L}\phi^*\simeq\mathbb{L}(\phi_*\phi^*)\simeq(-)\otimes^{\mathbb{L}}_A B$$

Lemma 5.9. $\phi: A \to B$ a *flat* ring homomorphism then

$$\mathbb{L}\phi^*:\mathcal{D}(A)_{\geq 0}\to\mathcal{D}(B)_{\geq 0}$$

Write $\mathbb{L}\phi^*$ in this case. We have this diagram

$$\mathcal{D}(A)_{\geq 0} \xrightarrow{\phi^*} \mathcal{D}(B)_{\geq 0}$$

$$\subset \qquad \subset$$

$$\operatorname{Mod}_B \xrightarrow{\phi^*} \operatorname{Mod}_B$$

Proof. Recall that ϕ_* detects discreteness. It suffices to show

$$\phi_* \mathbb{L} \phi^* : \mathcal{D}(A)_{\geq 0} \to \mathcal{D}(A)_{\geq 0}$$

preserves discreteness. But the above map is identifed with

 $(-) \otimes^{\mathbb{L}}_{A} B$

B flat A-module, implies that B is a filtered colimit of fg free A-modules (Lazard).

Remark 5.10. FIltered colimits are preserved by the embedding

$$\operatorname{Mod}_A \hookrightarrow \mathcal{D}(A)_{\geq 0}$$

This implies

$$M \otimes_A^{\mathbb{L}} B \simeq M \otimes_A^{\mathbb{L}} (\varinjlim_{\alpha} N_{\alpha}) \simeq \varinjlim_{\alpha} M \otimes N_{\alpha}$$

where the last object is discrete by above remark.

5.2 Addendum to Additive categories

Definition 5.11. C an ∞ -category with finite colimits and zero object. C is *prestable* if the following equivalent conditions hold:

- C admits a ff embedding $C \hookrightarrow D$ where D is *stable*, such that the essential image is closed under finite colimits and extensions.
- $\Sigma : \mathcal{C} \to \mathcal{C}$ is f.f. ($\Leftrightarrow \Omega\Sigma \simeq id$).

Example 5.12. Anim(C) is prestable if C is additive.

Example 5.13. $\mathcal{D}(A)_{\geq 0}$ is prestable for all $A \in CRng$.

Remark 5.14. Can use universal property of the construction

$$\operatorname{Anim}(\mathcal{C}) \rightsquigarrow \operatorname{Anim}^{\operatorname{nc}}(\mathcal{C}) = \varprojlim (\cdots \xrightarrow{\Omega} \operatorname{Anim}(\mathcal{C}))$$

to extend derived functors to nonconnective objects.

5.3 Reminder on sheaves of sets

5.15. If $X \in \text{Top}, \mathcal{B}$ a basis. Assume \mathcal{B} is *intersection closed*: for all $U \subset X$ open, $\exists U = \bigcup U_i, U_i \in \mathcal{B}$ such that

 $U_{i_0} \cap \cdots \cap U_{i_n} \in \mathcal{B}$ for all finite $\{i_0, \ldots, i_n\} \subseteq I$

For any presheaf \mathcal{F} on X tfae.

- 1. \mathcal{F} is a sheaf.
- 2. for all $U = \bigcup U_i$ covering with $U_i \in \mathcal{B}$ we have the limit diagram

$$\mathcal{F}(U) \longrightarrow \prod_i \mathcal{F}(U_i) \longrightarrow \prod_{i,j} \mathcal{F}(U_i \cap U_j)$$

Example 5.16. If X coherent top. space (the collection $U_c(X)$ of compact opens of X is closed under intersection and forms a basis of X). Then $U_c(X)$ is an intersection closed basis, so we get \mathcal{F} is a sheaf on X iff $U = \bigcup_i U_i$ finite covering $U_i \in \mathcal{B}$,

$$\mathcal{F}(U) \longrightarrow \prod_i \mathcal{F}(U_i) \longrightarrow \prod_{i,j} \mathcal{F}(U_i \cap U_j)$$

iff by indiction $U = U_1 \cup U_2$, $U_i \in \mathcal{B}$, it suffices to check Mayer-vietoris type condition:

$$\begin{array}{c} \mathcal{F}(U) \longrightarrow \mathcal{F}(U_1) \\ \downarrow & \downarrow \\ \mathcal{F}(U_2) \longrightarrow \mathcal{F}(U_1 \cap U_2) \end{array}$$

6 Sheaves with values in ∞ -categoires

Definition 6.1. X top. space, $X = \bigcup U_i$. The Čech nerve of the famil $(U_i)_i$ is the simplicial diagram

$$\cdots \sqcup_{i,j,k} U_{i,j,k} \xrightarrow{\longrightarrow} \sqcup_{i,j} U_{i,j} \xrightarrow{\longrightarrow} \sqcup U_i \quad \text{denoted } \check{C}(U,X)$$

note that I have omitted the left morphisms. This is coproduct is taken in category of presheaves.

Definition 6.2. $\mathcal{F}: \mathcal{U}(X)^{\mathrm{op}} \to \mathcal{V}, \mathcal{V}$ is an ∞ -category with limits. \mathcal{F} satisfies descent (i.e. a sheaf) if:

$$\mathcal{F}(U) \to \operatorname{Tot}(\mathcal{F}\check{C}(U_i/U)))$$

(where U is covered by this U_i) is an iso in \mathcal{V} . The coslimplicial diagram is defined via lke.

Example 6.3. If \mathcal{V} is an ordinary category, this limit is the same as the equalizer previously defined.

Theorem 6.4. X is a coherent top. space. \mathcal{V} is an ∞ -cat with limits, $\mathcal{F}: \mathcal{U}(X)^{op} \to \mathcal{V}$ a presheaf tfae.

- 1. \mathcal{F} is a sheaf.
- 2. for all $U, V \subseteq X$ cmopact open subsets

$$\begin{array}{ccc} \mathcal{F}(U \cup V) & \longrightarrow & \mathcal{F}(U) \\ & & \downarrow & & \downarrow \\ & \mathcal{F}(V) & \longrightarrow & \mathcal{F}(U \cap V) \end{array}$$

is cartesian in \mathcal{V} .

Theorem 6.5. X top. space. $\mathcal{B} \subseteq \mathcal{U}(X)$ basis which is \cap -closed (intersection closed), such that every $U \in \mathcal{B}$ is compact. $\mathcal{F} : U(X)^{\mathrm{op}} \to \mathcal{V}$ a presheaf. tfae.

- 1. \mathcal{F} satisfies descent. (is a sheaf).
- 2. for all $U_1, \ldots, U_n \in \mathcal{B}$ such that $U = \bigcup U_i \in \mathcal{B}$, then

$$\mathcal{F}(U) \xrightarrow{\simeq} \lim_{\longleftrightarrow S \neq \emptyset} \mathcal{F}(U_S)$$

limit over nonempty subset $S \subseteq \{1, \ldots, n\}$ where $U_S = \bigcap_{i \in S} U_i$.

Example 6.6. (Animated modules) X affine scheme = Spec A. There exists a unique Zariski sheaf on Z_{Zar} (small zariski site)

$$D: (X_{\operatorname{Zar}})^{op} \to \infty - \operatorname{Cat}$$

whose values on $U(f) = V(f)^c$ is

$$\mathcal{D}(U(f)) \simeq \mathcal{D}(A[f^{-1}])$$

Moreover $\mathcal{D}(U)^{\heartsuit} \simeq q.c.$ sheaves on U.

6.1 Sheaves on site

6.7. Site = category \mathcal{C} with Grothendieck topology τ . Then can talk about sheaves on \mathcal{C} .

Example 6.8. X is top. space. $\mathcal{U}(X)$ the Grothendieck topology is generated by family $(U_i \to U)_{i \in I}, U_i \subset U$ opens, $U = \bigcup U_i$.

Example 6.9. X_{Zar} =Small zariski site, of a scheme X as a category: $\mathcal{U}(X)$ with induced topology as 6.8.

Example 6.10. (Big Zariski (affine) site). The underlying category is Sch^{aff}. The topology τ is the topology generated by finite Zariski covering families

$$(U_i \hookrightarrow X)$$
 open embedding

which is jointly surjective, i.e.

$$(\bigsqcup U_i \twoheadrightarrow X)$$

(equivalently is faithfully flat.)

Definition 6.11. C a site, $\mathcal{B} \subset C$ a full subcategory is a *basis* for C if for all $X \in C$, exists a family $(Y_{\alpha} \to X)_{\alpha}$, $Y_{\alpha} \in \mathcal{B}$ which generates a covering sieve.

- $\mathcal{B} \subseteq \mathcal{C}$ is \cap -closed if \mathcal{C} admits fibered products.
- $\mathcal{B} \subseteq \mathcal{C}$ is closed under finite products
- for all $X \in \mathcal{C}$ exists family $(Y_{\alpha} \to X)_{\alpha \in \Lambda}, Y_{\alpha} \in \mathcal{B}$ and

$$Y_{\alpha_0} \times_X \cdots \times_X Y_{\alpha_n} \in \mathcal{B}$$

$$\forall \{\alpha_0, \ldots, \alpha_n\} \subset \Lambda$$

(which generates a covering sieve).

Remark 6.12. $\mathcal{B} \subseteq \mathcal{C}$ basis \Rightarrow induced a topology ono \mathcal{B} from \mathcal{C} . (a sieve is covering \Leftrightarrow image in \mathcal{C} is covering).

Theorem 6.13. \mathcal{C} site, $\mathcal{B} \subseteq \mathcal{C}$, \cap - closed basis, $F : \mathcal{C}^{op} \to \mathcal{V}$ presheaf. tfae.

- 1. \mathcal{F} is a sehaf on \mathcal{C} .
- 2. $\mathcal{F}|_{\mathcal{B}}$ is a sheaf on \mathcal{B} .

Remark 6.14. Under assumptions on the topoology on C can prove that descent can be checked using squares (Voevodsky) cd-structures.

6.15. Let $i : \mathcal{B} \hookrightarrow \mathcal{C}$ be inclusion.

$$\begin{array}{cc} \operatorname{Fun}(\mathcal{C}^{op},\mathcal{V}) & \stackrel{i^*}{\longrightarrow} & \operatorname{Fun}(\mathcal{B}^{op},\mathcal{V}) \\ & \subset & & \subset \\ & \operatorname{Shv}_{\mathcal{V}}(\mathcal{C}) & \stackrel{i^*}{\longrightarrow} & \operatorname{Shv}_{\mathcal{V}}(\mathcal{B}) \end{array}$$

Fact. i^* admits a right adjoint which is rke. Given $\mathcal{F}_0: \mathcal{B}^{op} \to \mathcal{V}$,

$$\mathcal{F} \coloneqq rke(\mathcal{F}_0) : \mathcal{C}^{op} \to \mathcal{V}, \quad \mathcal{F}(X) \simeq \varinjlim \mathcal{F}(X_0)$$

where the limit s taken over $(X_0, u), X_0 \in \mathcal{B}, u : X_0 \to X$ morphism.

7 Bonus: Animated modules vs. connected chain complex

Sebastian.

7.1. $R \in CRng$. Write Ch(R) for the cat of chain complex of *R*-modules.

Proposition 7.2. [Lurb, 1.3.5.3] Ch(R) admits a left proper combinatorial model structure where

- cofibs = level-wise monomorphisms.
- weak equiv. = quasi-isos.

7.3. localization. \mathcal{C} is an ∞ -category. $W \subseteq \mathcal{C}$ is a subcategory, a localization of \mathcal{C} by W is a functor $\gamma : \mathcal{C} \to W^{-1}\mathcal{C}$ s.t.

- $W^{-1}\mathcal{C}$ is an ∞ -cat.
- such that for all ∞ -cat \mathcal{D} ,

$$\operatorname{Fun}(W^{-1}\mathcal{C},\mathcal{D}) \xrightarrow{\gamma^*} \operatorname{Fun}(\mathcal{C},\mathcal{D})$$

is ff. and a functor $F : \mathcal{C} \to \mathcal{D}$ is in ess. image iff F inverts morphisms in W.

Example 7.4. 1. Anim $\simeq [we]^{-1}N(\operatorname{Set}_{\Delta})$

- 2. Any ∞ -cat is a loc. of a 1-cat.
- 3. $hW^{-1}\mathcal{C} \simeq hW^{-1}h\mathcal{C}$

Definition 7.5. $\mathcal{D}(R) \coloneqq qi^{-1} \operatorname{Ch}(R)$.

Theorem 7.6. $\mathcal{D}(R)$ is a presentable stable ∞ -cat.

Proof. More generally, (\mathcal{C}, W) any combinatorial model category. Then $W^{-1}\mathcal{C}$ is presentable (Dugger). [Cis20, 7.11?]. For stability, we show $\Sigma : \mathcal{D}(R) \to \mathcal{D}(R)$ is an equivalence. We 1-pushout in Ch(R). For any $C_* \in Ch(R)$,

note the differential on the cone is slightly different. $C_* \hookrightarrow \text{Cone}(C_*)$ is a cofibration in Ch(R), It follows that the square is a pushout in $\mathcal{D}(R)$.

Cone $(C_*) \simeq 0$. This implies Σ coincides with $C_* \mapsto C_*[1]$ and this is an equivalence.

Definition 7.7. A *t*-structure on a stable ∞ -cat is a *t*-structure on $h\mathcal{C}$. i.e. we have two full subcats $h\mathcal{C}_{\geq 0}, h\mathcal{C}_{\leq 0} \subset h\mathcal{C}$ such that

• For $X \in h\mathcal{C}_{\geq 0}, Y \in h\mathcal{C}_{\leq 0}$

$$\operatorname{Hom}_{h\mathcal{C}}(X, Y[-1]) \simeq 0$$

- $h\mathcal{C}_{\geq 0}[1] \subset h\mathcal{C}_{\geq 0}$ and dually.
- for all $X \in h\mathcal{C}_i$ there is a fiber sequence

$$X' \to X \to X''$$

with $X' \in h\mathcal{C}_{\geq 0}, X'' \in h\mathcal{C}_{\leq 0}$.

7.8. We obtain two full subcategories $\mathcal{C}_{\geq 0}, \mathcal{C}_{\leq 0}$.

Example 7.9. $\mathcal{D}(R)$ with

$$\mathcal{D}(R)_{\geq 0} = \{C_* : H_*(C_*) = 0 \forall i < 0\}$$
$$\mathcal{D}(R)_{\leq 0} = \{C_* : H_*(C_*) = 0 \forall i > 0\}$$

Theorem 7.10. The functor $\operatorname{Mod}_R \to \mathcal{D}(R)_{\geq 0}$ (connective. chain complex) $M \mapsto M[0]$, induces an equivalence on ∞ -cat,

$$\operatorname{Anim}(\operatorname{Mod}_R) \xrightarrow{\cong} \mathcal{D}(R)_{\geq 0}$$

Here Mod_R is a 1-category.

Proof. Step 1. i is ff. True more generally, if C has *t*-structure, $C^{\diamond} := C_{\geq 0} \cap C_{\geq 0} \simeq NhC^{\diamond}$. This is true since for $X, Y \in C^{\diamond}$, then

$$\pi_n \operatorname{Map}_{\mathcal{C}}(x, y) \simeq \pi_0 \operatorname{Map}_{\mathcal{C}}(X, Y[-n]) \simeq 0$$

Step 2. for all $P \in \operatorname{Proj}_R$ category of fg. project R-mod, $i(P) \in \mathcal{D}(R)_{\geq 0}$ is compact project. This implies the functor correpresented by i(P) preserves filtered colimits+ geom. realizations.

filtered colimits. Let $K \in \mathcal{D}(R)$ is compact iff $K \in h\mathcal{D}(R)$ is compact. [Lurb, 1.4.4.1]

$$\bigoplus_{\alpha} \operatorname{Hom}_{h\mathcal{D}(R)}(K, T_{\alpha}) \xrightarrow{\simeq} \operatorname{Hom}_{h\mathcal{D}(R)}(K, \bigoplus_{\alpha} T_{\alpha})$$

And the compact objects in $h\mathcal{D}(R)$ are precisely the perfect complexes.². In particular P[0] is a perfect complex.

geometric realizations.

Lemma 7.11. Let $Q \in \mathcal{D}(R)_{\geq 0}$ s.t. for all $X \in \mathcal{D}(R)_{\geq 0}$,

$$\operatorname{Hom}_{h\mathcal{D}(R)}(Q[-i], X) \simeq \operatorname{Ext}^{i}(Q, X) = 0 \text{ for all } i > 0 \Rightarrow Q \text{ is proj}$$

(projective as in) Map(Q, -) commutes with geometric generalizations.

²Equivalent to bounded complex of fg. proj. modules

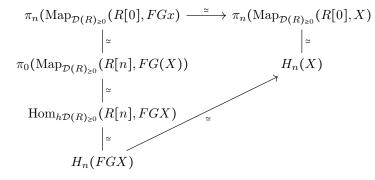
Step 3. By 1+2, $i : \operatorname{Proj} \hookrightarrow \mathcal{D}(R)_{\geq 0}$ induces a ff colimit preserving functor, inducing ff. colimit preserving functor [Lura, 5.5.8.22], $F : \operatorname{Anim}(\operatorname{Mod}_R) \to \mathcal{D}(R)_{\geq 0}$.

Presentability implies we get right adjoint $G: \mathcal{D}(R)_{\geq 0} \to \operatorname{Anim}(\operatorname{Mod}_R)$. Let $X \in \mathcal{D}(R)_{\geq 0}$, have a counit map $\varepsilon_x: FGX \to X$

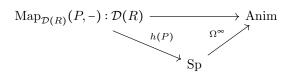
wts ε_x is an equivalence. To show this we observe

 $\operatorname{Map}_{\operatorname{Anim}(\operatorname{Mod}_R)}(R, GX) \simeq \operatorname{Map}_{\mathcal{D}(R)_{\geq 0}}(R[0], FGx) \xrightarrow{\varepsilon_x} \operatorname{Map}_{\mathcal{D}(R)_{\geq 0}}(R[0] = FR, X)$

where the outer triangle is equivlanece by adjunction. This implies



7.12. Have map



Observe

$$\pi_{-n}\underline{\operatorname{Map}}(P,X) = \operatorname{Ext}^n(P,X[n])$$

This implies h(P) restricts to a functor

$$F: \mathcal{D}(R)_{\geq 0} \to \operatorname{Sp}_{>0}$$

Goal F preserves geo. real. Then it suffices too show $\mathcal{D}(R)_{\geq 0} \to \operatorname{Sp}_{\geq 0} \xrightarrow{\Omega^{\infty}} \operatorname{Anim.}$ commutes with geo. realization. The second map commutes with geo realization from [Lurb, 1.4.3.9].

7.13. [Lurb, 1.3.3.10]. Suffices to see that for all n,

$$\mathcal{D}(R)_{\geq 0} \xrightarrow{F} \operatorname{Sp}_{\geq 0} \xrightarrow{\tau_{\leq n}} \operatorname{Sp}_{\geq 0, \leq n}$$

for all n. Now observe

$$\begin{array}{c} \mathcal{D}(R)_{\geq 0} \xrightarrow{F} \operatorname{Sp}_{\geq 0} \\ \downarrow^{\tau_{\leq n}} \qquad \downarrow \\ (\mathcal{D}(R)_{\geq 0})_{\leq n} \xrightarrow{\tau_{\leq n} F} \operatorname{Sp}_{\geq 0, \leq n} \end{array}$$

 $\tau_{\leq n}F$ is a right exact functor between *n*-categories. Such a functor always preserves geoemtric realization. Note the vertical maps commutes with all colimits.

Quasi-coherent Sheaves 8

8.1 Addendum

Proposition 8.1. (Universal properties of Anim^{nc}(\mathcal{C}). \mathcal{C} , \mathcal{D} are *additive* algebraic categories. F: Anim(\mathcal{C}) \rightarrow $\operatorname{Anim}(\mathcal{D})$

1. If F commutes with Ω then it extends uniquely to a functor

$$F^{\mathrm{nc}}:\operatorname{Anim}^{\mathrm{nc}}(\mathcal{C})\to\operatorname{Anim}^{\mathrm{nc}}(\mathcal{D})$$

such that $\Omega^{\infty - n} \circ F^{\mathrm{nc}} \simeq F \circ \Omega^{\infty - n}$.

Informally, $(X_0, S_1, \ldots) \mapsto (F(X_0), F(X_1), \ldots)$.

2. If F commutes with Σ then it extends uniquely to a functor

 $F^{\mathrm{nc}}:\operatorname{Anim}^{\mathrm{nc}}(\mathcal{C})\to\operatorname{Anim}^{\mathrm{nc}}(\mathcal{D})$

 $F^{\mathrm{nc}} \circ \Sigma^{\infty - n} \simeq \Sigma^{\infty - n} \circ F$ for all $n \ge 0$, where

$$\Sigma^{\infty - n} : \operatorname{Anim}(\mathcal{C}) \to \operatorname{Anim}^{\operatorname{nc}}(\mathcal{C})$$

is left adjoint to $\Omega^{\infty - n}$.

8.2.

$$\Sigma^{\infty}$$
: Anim(\mathcal{C}) \rightarrow Anim^{nc}(\mathcal{C})

 $F^{\rm nc}$ preserves connective objects.

1. We have diagram Proof.

$$\begin{array}{cccc} \operatorname{Anim}^{\operatorname{nc}}(\mathcal{C}) & \longrightarrow & \cdots & \longrightarrow & \operatorname{Anim}(\mathcal{C}) & \stackrel{\Omega}{\longrightarrow} & \operatorname{Anim}(\mathcal{C}) \\ & & \downarrow^{F^{\operatorname{nc}}} & & \downarrow^{F} & & \downarrow^{F} \\ \operatorname{Anim}^{\operatorname{nc}}(\mathcal{D}) & \longrightarrow & \cdots & \longrightarrow & \operatorname{Anim}(\mathcal{C}) & \stackrel{\Omega}{\longrightarrow} & \operatorname{Anim}(\mathcal{C}) \end{array}$$

the diagram commutes by hypothesis.

2. Dually can prove

$$\operatorname{Anim}(\mathcal{C}) \xrightarrow{\Sigma} \operatorname{Anim}(\mathcal{C}) \longrightarrow \cdots \qquad \cdots \longrightarrow \operatorname{Anim}^{\operatorname{nc}}(\mathcal{C})$$

colimit in the ∞ -cst of presentable ∞ -categories of colimit preserving functors. This follows from $Pr^{L} \simeq (Pr^{R})^{\text{op}}$ and we have a limit prserving +reflecting functor $Pr^{R} \rightarrow \widehat{\text{Cat}}_{\infty}$.

Example 8.3. $\phi : A \rightarrow B$ ring homomorphism.

$\mathbb{L}\phi^*:\mathcal{D}(A)\to\mathcal{D}(B)$

which restricts to

similarly

 $\mathbb{L}\phi^*:\mathcal{D}(A)_{\geq 0}\to\mathcal{D}(B)_{\geq 0}$ $\phi_*: \mathcal{D}(B) \to \mathcal{D}(A)$ which restricts to $\phi_*: \mathcal{D}(B)_{>0} \to \mathcal{D}(A)_{>0}$

8.2 Grothendieck topologies

8.4. Zariski topology on CRng^{op} is the Grothendieck topology gen. by families

$$(A \xrightarrow{\phi_i} A_i)_i$$

where ϕ_i flat epimorphisms $(A_i \otimes_A A_i \xrightarrow{\simeq} A_i)$ of finite projective such that $A \to \prod A_i$ flathfully flat.

- Equivalently, finite familes $(A \to A[f_i^{-1}])_i$ where $f_i \in A$ jointly generate a unit ideal of A.
- Under the equivalence $\operatorname{CRng}^{op} \simeq \operatorname{Sch}^{\operatorname{aff}}$ this is the big affine Zariski Site.

Theorem 8.5. The functors

$$\mathcal{D}_{\geq 0}, \mathcal{D}: \operatorname{CRng} \to \operatorname{Cat}_{\infty}$$

which are respectively described as

$$A \mapsto \mathcal{D}(A)_{\geq 0}, \varphi \mapsto \mathbb{L}\varphi^*$$

$$A \mapsto \mathcal{D}(A), \varphi \mapsto \mathbb{L}\varphi^*$$

satisfies Zariski descent.

• In particular, fr every famil $(A \rightarrow A_i)_i$ generating a Zariski covering sieve there is a limit diagram

$$\mathcal{D}(A) \longrightarrow \prod_i \mathcal{D}(A_i) \xrightarrow{\longrightarrow} \prod_{i,j} \mathcal{D}(A_i \otimes_A A_j) \xrightarrow{\longrightarrow} \cdots$$

8.3 Quasicoherent sheaves on affine schemes

Theorem 8.6. X = Spec(A) an affine scheme. Then there exists a unique Zariski sheaf of ∞ -cat on the small Zariski X_{Zar} .

 $\mathcal{D}: X_{\operatorname{Zar}}^{op} \to \operatorname{Cat}_{\infty}$

whose values on elementary opens U(f) are given by

$$\mathcal{D}(U(f)) \simeq \mathcal{D}(A[f^{-1}])$$

Moreover: any affine open $U = \operatorname{Spec} R \subseteq X$,

$$\mathcal{D}(U) \simeq \mathcal{D}(B)$$

Remark 8.7. This implies there exists unique $\mathcal{O}_X \in \mathcal{D}(X)$ whose restriction to any elementary open $U(f) \subseteq X$ is $A[f^{-1}] \in \mathcal{D}(A[f^{-1}]) \simeq \mathcal{D}(U(f))$. This is the structure sheaf of X. Happens to be discrete.

8.8 (?). Claim: $\mathcal{D}: (\mathrm{Sch}^{\mathrm{aff}})^{op} \to \mathrm{Cat}_{\infty}, \operatorname{Spec} A \mapsto \mathcal{D}(A)$ is a Zariski sheaf.

Let $X \in \text{Sch}^{\text{aff}}$, $(U_{\alpha} \to X)_{\alpha}$, Zariski covering, then

$$\mathcal{D}(X) \to \operatorname{Tot}(\mathcal{D}(\check{C}(U_{\alpha}/X)_{\bullet}))$$

is an equivalence. Note U_{α} are all afine, so this is special case of the previous theorem.

Remark 8.9. Descent for \mathcal{D} (limits of $\mathcal{D}_{\geq 0}$) follows from $\mathcal{D}_{\geq 0}$. The sheaf condition only involve limits.

Lemma 8.10. (fpqc conservativity) $\phi_{\alpha} : (A \to B_{\alpha})_{\alpha}$ finite finally of flat ring homomorphisms such that $A \to B := \prod B_{\alpha}$ is faithfully flat, then the family of functors

$$\mathbb{L}\phi_{\alpha}^{*}:\mathcal{D}(A)_{\geq 0}\to\mathcal{D}(B_{\alpha})_{\geq 0}$$

is jointly conservative. Some omit the \mathbb{L} as the rings are flat, hence, preserves discrete objects.

Proof.

- Note $\mathcal{D}(B)_{\geq 0} \simeq \prod_{\alpha} \mathcal{D}(B_{\alpha})_{\geq 0}$. Therefore we may as well assume that the family consists of a single faithfully flat map.
- Claim: if $\phi^* M \simeq 0$ then $M \simeq 0$ $(M \in \mathcal{D}(A)_{\geq 0})$.
- Note. $M \simeq 0 \Leftrightarrow \pi_i M = 0$ for all $i \ge 0.^3$

$$\Leftrightarrow \pi_i M \otimes_A B \simeq 0 \text{ for all } i$$
$$\Leftrightarrow \pi_i (M \otimes_A^{\mathbb{L}} B) \simeq 0 \text{ for all } i \text{ (flatness)}$$
$$\Leftrightarrow M \otimes_A^{\mathbb{L}} B \simeq 0$$

Proof. of Thm 8.6. Apply last lecture. Sufficient to show.

• Claim. $U, V \subset X$ affine opens such that $U \cup V$ affine. Then

$$\mathcal{D}(U \cup V) \longrightarrow \mathcal{D}(U)$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\mathcal{D}(V) \longrightarrow \mathcal{D}(U \cap V)$$

(Take $\mathcal{U}_{aff}(X) \subset \mathcal{U}(X)$ affine opens. This is a \cap -closed basis since X affine.)

- wlog: $X = U \cup V$.
- $A \coloneqq \Gamma(X, \mathcal{O}_X), A_1 = \Gamma(U, \mathcal{O}_U), A_2 = \Gamma(V, \mathcal{O}_V), A_{12} = \Gamma(U \cap V, \mathcal{O}_{U \cap V}).$ Want. $F : \mathcal{D}(A) \xrightarrow{\simeq} \mathcal{D}(A_1) \times_{\mathcal{D}(A_{12})} \mathcal{D}(A_2)$
- $G: \mathcal{D}(A_1) \times_{\mathcal{D}(A_{12})} \mathcal{D}(A_2) \to \mathcal{D}(A)$ right adjoint. The lhs consists of

$$(M_1, M_2, M_1 \otimes_{A_1} A_{12} \simeq M_2 \otimes_{A_2} A_{12}) \mapsto M_1 \times M_{12}M_2$$

where $M_i \in \mathcal{D}(A_i)$.

• Check. unit. id $\simeq GF$. For all $M \in \mathcal{D}(A)_{\geq 0}$,

$$M \xrightarrow{\simeq} M_1 \times_{M_{12}} M_2$$
$$M_2 \coloneqq M \otimes_A A_2$$

³This is because $M \mapsto M^{\circ}$ is conservative.

- Apply fpqc conservativity: (derived) extension of scalars along $A \to A_1, A \to A_2$ is jointly conservative. ($A \to A_1, A \to A_2$) is a fin. flat family which is jointly faithfully flat.)
- Want $M \otimes_A A_i \to (M_1 \times_{M_{12}} \otimes M_2) \otimes_A A_i$ iso. for all $i \in \{1, 2\}$. The rhs (wlog i = 1) [?]

$$\simeq (M_1 \otimes_A A_i) \otimes_{M_{A_1} \otimes_A A_i} (M_2 \otimes A_i)$$

• Now it suffices to show that G is conservative. Exercise. This implies by rke along $\mathcal{U}_{aff}(X) \subset \mathcal{U}(X)$ gives you sheaf of X_{Zar} .

8.4 Quasicoherent sheaves on schemes

Theorem 8.11. 1. There is a unique Zar sheaf

$$\mathcal{D}: (\mathrm{Sch})^{op} \to \mathrm{Cat}_{\infty}$$

which extends $\mathcal{D}: (\mathrm{Sch}^{\mathrm{aff}})^{op} \to \mathrm{Cat}_{\infty}$.

2. Moreover

$$\mathcal{D}(X) \xrightarrow{\simeq} \lim_{S, S \to X} \mathcal{D}(A)$$

over pairs $(S = \operatorname{Spec} A, S \to X)$ where S affine and $S \to X$ is a morphism.

8.12. Recall. (Comment on last time) Sch by Zariski site, topology generated $(U_i \to X)_i$ open immersions $\bigsqcup U_i \to X$ is jointly surjective.

• There is an equivalence, for any \mathcal{V} an ∞ -cat with limits,

$$\operatorname{Shv}_{\operatorname{Zar}}^{\mathcal{V}}(\operatorname{Sch}) \xrightarrow{\simeq} \operatorname{Shv}_{\operatorname{Zar}}^{\mathcal{V}}(\operatorname{Shv}^{\operatorname{aff}})$$

 $\operatorname{Sch}^{\operatorname{aff}} \subset \operatorname{Sch}^{\operatorname{sep}}$ and $\operatorname{Sch}^{\operatorname{sep}} \subseteq \operatorname{Sch}$ are bases which are \cap -closed.

• $\mathcal{D} := \text{rke of } \mathcal{D} : (\text{Sch}^{\text{aff}})^{\text{op}} \to \text{Cat}_{\infty}.$

Remark 8.13. No analogue statement for triangulated categories.

$$h\mathcal{D}: (\mathrm{Sch}^{op} \to \mathrm{TriCat} \to \mathrm{Cat})$$

 $X \mapsto h\mathcal{D}(X)$

do not satisfy descent.

$$\mathcal{D}(\mathbb{P}^1) \xrightarrow{\simeq} \mathcal{D}(A^n) \times_{\mathcal{D}(\mathbb{A}^1 \setminus \{0\})} \mathcal{D}(BA^1)$$

fails at $h\mathcal{D}$ level.

Corollary 8.14. $X \in \text{Sch.}^{4}(X_{\text{Zar}})^{op} \xrightarrow{\mathcal{D}} \text{Cat}_{\infty}$ is a Zariski sheaf. Proof by restriction. [?]

 $\mathbf{28}$

⁴Different to 8.6 which is for *affine*.

Proposition 8.15. $X \in \text{Sch.}$ The zariski sheaf $\mathcal{D} : (X_{\text{Zar}})^{op} \to \text{Cat}_{\infty}$ is the right kan extension of its restriction to $\mathcal{U}_{\text{aff}}(X)$. In particular, for all $U \subseteq x$ open

$$\mathcal{D}(U) \xrightarrow{\simeq} \lim \mathcal{D}(V)$$

This implies \mathcal{D} is the unique Zariski sheaf on X_{Zar} whose values on affine opens $U = \text{Spec } A \subset X$ are $\mathcal{D}(U) \subseteq \mathcal{D}(A)$.

Proof. $\mathcal{U}_{sep}(X) \subseteq \mathcal{U}(X), \mathcal{U}_{aff}(X), \mathcal{U}_{sep}(X)$ forms \cap -closed basis.

Definition 8.16.

- A quasi-coherent complex on a scheme X is an object $\mathcal{F} \in \mathcal{D}(X)$.
- A qcoh. animated sheaf / connective qcoh. complex. on X is an object $\mathcal{F} \in \mathcal{D}(X)_{>0}$

Example 8.17. • $X = \operatorname{Spec} A$ affine $\mathcal{D}(X) \simeq \mathcal{D}(A)$.

- X scheme, $\mathcal{D}(X) \xrightarrow{\simeq} \lim_{U \subseteq X} \mathcal{D}(U)$. A qcho complex on X amounts to
 - For all $U = \operatorname{Spec} A \subseteq X$ an $\mathcal{F}_U \in \mathcal{D}(U) \subseteq \mathcal{D}(A)$.
 - $\forall U \subseteq V \subseteq X$ inclusion of affine opens

$$\mathcal{F}_U|_V \simeq \mathcal{F}|_V$$

- homotopy coherent system of compatibilities between these isos.

- $\mathcal{F} \in \mathcal{D}(X)$ is connective $\Leftrightarrow \forall U = \operatorname{Spec}(A) \subseteq X$ affine open, $\Gamma(U, \mathcal{F}) \in \mathcal{D}(A)$ is a connective animated module $(\in \mathcal{D}(A)_{\geq 0})$.
- $\mathcal{F} \in \mathcal{D}(X)$ is discrete $\Leftrightarrow \forall U = \operatorname{Spec}(A) \subseteq X$ affine open, $\Gamma(U, \mathcal{F}) \in \mathcal{D}(A)$ is discrete.
- **Corollary 8.18.** $X \mapsto \mathcal{D}(X)^{\heartsuit}$ Zariski sheaf of caegories, detrmined $\mathcal{D}(\operatorname{Spec} A)^{\heartsuit} \simeq \operatorname{Mod}_A$ for all $A \in \operatorname{CRng}$.
 - $\mathcal{D}(X)^{\heartsuit} \simeq \operatorname{QCoh}(X)$ is abelian cat. of qcho \mathcal{O}_X -modules.

Remark 8.19. $\mathcal{D}(X)$ is a stable ∞ -cat for all $X \in Sch$. $\mathcal{D}(X)_{\geq 0}$ is prestable.

9 Direct image functor

Definition 9.1. (Inverse image functor). $f: X \to Y$ be a mopphism of schemes.

$$\mathcal{D}(f):\mathcal{D}(Y)\to\mathcal{D}(X)$$

inverse imange denoted $\mathbb{L}f^* \coloneqq \mathcal{D}(f)$. $\mathcal{D}: (\mathrm{Sch})^{op} \to \mathrm{Cat}_{\infty}$.

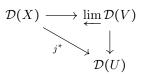
9.2. We have induced functor

$$\mathcal{D}(Y)_{\geq 0} \xrightarrow{\mathbb{L}f^*} \mathcal{D}(X)_{\geq 0}$$

Example 9.3. $f: X \to Y$ a morphism of affine schemes. $X = \operatorname{Spec} B, Y = \operatorname{Spec} A$. Corresponds to ring homo. $\phi: A \to B$, then

$$\mathbb{L}f^*: \mathcal{D}(Y) \simeq \mathcal{D}(A) \to \mathcal{D}(X) \simeq \mathcal{D}(B)$$

Example 9.4. If $j: U \to X$ is open affine subscheme. Then the following diagram commutes



In other words, give $\mathcal{F} = (\mathcal{F}_V)_V \in \mathcal{D}(X)$, then j^* is given by projection onto the component.

Example 9.5. f flat. $f: X \to Y$ implies induces a functor on discrete objects.

$$\mathbb{L}f^*:\mathcal{D}(Y)^{\heartsuit}\to\mathcal{D}(X)^{\heartsuit}$$

This follows by descent from affine case.

Corollary 9.6. ("Internal descent"). If $X \in Sch$, $\mathcal{F} \in \mathcal{D}(X)$.

Notation. $\Gamma(U, \mathcal{F}) \coloneqq \operatorname{Map}_{\mathcal{D}(U)} \mathcal{O}_U, \mathcal{F}_U), U \subseteq X$ open. ⁵

Claim: (For simplicity, assume X is qcqs) $\Gamma(-,\mathcal{F})$ is a sheaf of anima on X_{Zar} . In particular, we want

$$\Gamma(U \cup V, \mathcal{F}) \longrightarrow \Gamma(U, \mathcal{F})
 \downarrow
 \Gamma(V, \mathcal{F}) \longrightarrow \Gamma(U \cap V, \mathcal{F})$$

for all $U, V \subseteq X$ q.c open.

Remark 9.7. Harry. This is also a sheaf on the large Zariski site over X.

Proof. Note that for any $\mathcal{G}, \mathcal{G}' \in \mathcal{D}(U \cup V)$,

This follows because the square in $\mathcal{D}(-)$ is cartesian. And formation of mapping spaces of ∞ -categories commutes with "limits".

Apply this to $\mathcal{G} = \mathcal{O}_{U \cup V}, \mathcal{G}' = \mathcal{F}|_{U \cup V}.$

9.1 Direct image

Definition 9.8. If $f: X \to Y$ in Sch, we have $\mathbb{R}f_*: \mathcal{D}(X) \to \mathcal{D}(Y)$ direct image, is the right adjoint of $\mathbb{L}F^*$. Example 9.9. $X = \operatorname{Spec} B, Y = \operatorname{Spec} A, phi: A \to B$, we have

 $\mathbb{R}f_* = \phi_* : \mathcal{D}(A) \to \mathcal{D}(B)$

in particular preserves connective and discrete objects.⁶

⁵Can also think $\mathcal{F}_U \simeq j^*(\mathcal{F})$

⁶Hence, we would write $f_* = \mathbb{R}f_*$.

9.10. $\mathbb{R}f_*$ typically does *not* preserve connectivity for non-affine morphisms.

Theorem 9.11. $f: X \to Y$ any qcqs morphism

- 1. $\mathbb{R}f_*$ commutes with colimits.
- 2. Base change formula.

$$\begin{array}{c} X' \xrightarrow{g} Y' \\ \downarrow^p & \downarrow^q \\ X \xrightarrow{f} Y \end{array}$$

$$\mathbb{L}q^*\mathbb{R}f_* \to \mathbb{R}g_*\mathbb{L}p^*$$

if f, q are are flat (more generally tor-independent squares)

3. Projection formula: $\mathcal{F} \in \mathcal{D}(X), \mathcal{G} \in \mathcal{D}(Y)$,

$$\mathbb{R}f_*(\mathcal{F}) \otimes^{\mathbb{L}} \mathcal{G} \xrightarrow{\simeq} \mathbb{R}f_*(\mathcal{F} \otimes^{\mathbb{L}} \mathbb{L}f^*\mathcal{G}))$$

canonical iso.

Remark 9.12. Given commutive square

$$\begin{array}{c} \mathcal{C} \xrightarrow{f} \mathcal{C}' \\ \downarrow^p & \downarrow^q \\ \mathcal{D} \xrightarrow{g} \mathcal{D}' \end{array}$$

assume f, p, q, g have right adjoints f^R, g^R, p^R, q^R , then the sqaure - by flipping the vertical arrows -

$$\begin{array}{ccc} \mathcal{D} & \stackrel{g}{\longrightarrow} & \mathcal{D}' \\ \downarrow_{p^R} & & \downarrow_{q^R} \\ \mathcal{C} & \stackrel{f}{\longrightarrow} & \mathcal{C}' \end{array}$$

Then the square commutes up to natural transformation.

$$fp^R \rightarrow q^R q fp^R \rightarrow q^R gpp^R \rightarrow q^R g$$

We say that the (original) square is *vertically right adjointable* if the natrual transformoation is an iso.

9.13. The base change formual says that

$$\mathcal{D}(Y) \xrightarrow{\mathbb{L}q^*} \mathcal{D}(Y') \downarrow_{\mathbb{L}f^*} \qquad \downarrow_{\mathbb{L}g^*} \\ \mathcal{D}(X) \xrightarrow{\mathbb{L}p^*} \mathcal{D}(X')$$

Remark 9.14. $\mathbb{L}f^* : \mathcal{D}(Y) \to \mathcal{D}(X)$ is symmetric monoidal. $\Rightarrow \mathcal{D}(X)$ has a canonical $\mathcal{D}(Y)$ -module structure. Projection formula for $\mathbb{R}f_*$ says that $\mathbb{R}f_*$ is $\mathcal{D}(Y)$ -linear.

Lemma 9.15. $(\Phi_i : \mathcal{D}_i \to \mathcal{C}_i)_{i \in I}$ diagram in Fun $(\Delta^1, \operatorname{Cat}_{\infty})$, I is some (∞ -cat). Suppose that each square are vertically right adjointable for $i \to j$ in I,

 $\mathcal{D}_i \longrightarrow \mathcal{D}_j$

 $\begin{array}{cccc}
\downarrow \Phi_i & \downarrow \Phi_j \\
\mathcal{C}_i & \longrightarrow & \mathcal{C}_j
\end{array}$

Consider the induced functor

$$\begin{array}{ccc} \mathcal{D} & \stackrel{\simeq}{\longrightarrow} & \lim_{i} \mathcal{D}_{i} \\ \downarrow_{\Phi} \\ \mathcal{C} & \stackrel{\simeq}{\longrightarrow} & \lim_{i} \mathcal{C}_{i} \\ \end{array} \\ \begin{array}{ccc} \mathcal{D} & \longrightarrow & \mathcal{D}_{j} \\ \downarrow_{\Phi} & & \downarrow_{\Phi_{j}} \end{array}$$

The square

is vertically right adjointable for all $i \in I$.

Proof. Of base change in affine case. By the the lemma, reduce to *animated* modules (connective complexes).

 $\mathcal{C} \longrightarrow \mathcal{C}_j$

$$\begin{array}{c} A \xrightarrow{\phi} B \\ \downarrow \psi \quad \mathsf{r} \quad \downarrow \psi' \\ A' \xrightarrow{\phi'} B' \end{array}$$
$$B' \simeq B \otimes_A A' \simeq B \otimes_A^{\mathbb{L}} A' \\ \mathbb{L} \psi^* \phi_* \xrightarrow{?} \phi'_* \mathbb{L} \psi'^* \\ N \otimes_A^{\mathbb{L}} A' \to N \otimes_B^{\mathbb{L}} B' \end{array}$$

Do we have

But

$N \otimes_B^{\mathbb{L}} B' \simeq N \otimes_B^{\mathbb{L}} B \otimes_A^{\mathbb{L}} A' \simeq N \otimes_A^{\mathbb{L}} A'$

9.2 Descent for the direct image functor

Remark 9.16. $X \in Sch, U, V \subseteq X$ open. $\mathcal{F} \in \mathcal{D}(U \cup V), j_U : U \hookrightarrow X$ inclusion $(V, U \cap V)$. Then

~

$$j_{U\cup V,*}(\mathcal{F}) \xrightarrow{-} j_{U,*}(\mathcal{F}_U) \times_{j_{U\cap V,*}} (\mathcal{F}_{U\cap V}) j_{V_*}\mathcal{F}(V)$$

Indeed this follows from the equivalence

$$(j^*U, j_V^*) : \mathcal{D}(U \cup V) \xrightarrow{\simeq} \mathcal{D}(U) \times_{\mathcal{D}(U \cap V)} \mathcal{D}(V)$$

Right adjoint :

$$(\mathcal{F}, \mathcal{G}, \mathcal{F}|_{U \cap V} \simeq \mathcal{G}|_{U \cap V}) \mapsto j_{U,*}(\mathcal{F}) \times_{j_{U \cap V,*}} j_{V,*}(\mathcal{F})$$

The map in question is the unit map of the adjunction.

Corollary 9.17. $f: X \to Y, X = U \cup V$ open cover, $f_U = f|_U$, etc. If $\mathcal{F} \in \mathcal{D}(X)$, then

$$f_*(\mathcal{F}) \xrightarrow{\simeq} f_{U,*}(\mathcal{F}_U) \times_{f_{U \cap V,*}(\mathcal{F}_{U \cap V})} f_{V,*}(\mathcal{F}_V)$$

Proof. Apply f_* to previous isomorphism.

9.3 Sketch of proof of bsae change formula

9.18. Case 1: $j: U \hookrightarrow X$ is open immersion. $U \subseteq X$ is quasicompact. $f: X' \to X$ morphism of affine schemes.

$$\begin{array}{ccc} U' & \stackrel{j'}{\longrightarrow} & X' \\ \downarrow^{f_U} & \downarrow^f \\ U & \stackrel{j}{\longmapsto} & X \end{array}$$

Claim:

$$f^*j_* \xrightarrow{\simeq} j'_*f^*_U$$

If U is affine, then we already know this.

• $U = V \cup W$ and the claim holds for V and W, then it holds for U.

This follows from "descent for j_* ." From sec. 9.2.

• U qc. can write $U = \bigcup_i U(f_i)$ by finite union of elementary opens. We conclude by induction.

9.19. Case 2.⁸.

$$\begin{array}{ccc} X' \xrightarrow{g} Y' \\ \downarrow^p & \downarrow^q \\ X \xrightarrow{f} Y \end{array}$$

Y, Y' affines, $f: X \to Y$ qc. Can argue similarly by induciton on an affine open cover of X, "descent for f_* ".

9.20. General case. Use "adjointability of limits" lemma and descent to reduce to the case where Y, Y' are affine.

9.4 Direct image along along open immersions

Corollary 9.21. $U \subseteq X$ qc open. $j: U \hookrightarrow X$. Then the functor

$$\mathbb{R}j_*: \mathcal{D}(U) \to \mathcal{D}(X)$$

is fully faithful.

• Equivalently, $j^* \mathbb{R} j_* \xrightarrow{\text{counit}} \text{id} : \mathcal{D}(U) \to \mathcal{D}(U)$ is an isomorphism.

⁷All the functors now will have \mathbb{R} omitted for simplicity.

⁸Now we revert back to original notation

Proof. We have cartesian square, j flat,

$$\begin{array}{c} U == U \\ \| & \downarrow^{j} \\ U \stackrel{j}{\longrightarrow} X \end{array}$$

Apply base change formula.

9.22. $Z \subset X$ closed subsecheme $i: Z \to X$, \mathbb{R}_* is typically not f.f. even though $i_* : \operatorname{QCoh}(Z) \to \operatorname{QCoh}(X)$ is fully faithful. What fails is that

$$Z = Z$$

$$\| \qquad \downarrow_i$$

$$Z \xrightarrow{i} X$$

is not Tor-independent.

10 Perfect complexes

10.1 Perfect complexes

Definition 10.1. C stable ∞ -category. $C_0 \subseteq C$ full subcategory.

- C_0 is *stable* if it contains the zero object $0 \in C$ and is closed under (co)fibers in C. Equivalently C_0 is a stable ∞ -category, and the inclusion is an exact functor.
- C_0 is *thick* if it stable and moreover closed under direct summands (=retracts) in C.

Definition 10.2. $M \in \mathcal{D}(A)$ is *perfect* if it is contained in the thick subcategory generated by the object $A \in \mathcal{D}(A)$. $\mathcal{D}_{perf}(A) \subseteq \mathcal{D}(A)$ be full subcategory of perfect modules.

Example 10.3. $f \in A$. $\operatorname{cofib}(A \xrightarrow{f} A) \in \mathcal{D}_{\operatorname{perf}}(A)_{\geq 0}$. This is Koszul "complex" on the element f). More generally if $f_1, \ldots, f_n \in A$, then

$$K_{f_1,\ldots,f_n} := \otimes^{\mathbb{L}} \operatorname{cofib}(A \xrightarrow{f_i} A) \in \mathcal{D}_{\operatorname{perf}}(A)_{\geq 0}$$

Non example. $A = k[x]/(x^2)$. $k \in \mathcal{D}(A)$ is not perfect.

Definition 10.4. X scheme. $\mathcal{F} \in \mathcal{D}(X)$ is *perfect* if for all $U = \operatorname{Spec} A \subseteq X$, $\mathcal{F}_U \in \mathcal{D}(U) \simeq \mathcal{D}(A)$ is perfect.

Corollary 10.5. The presheaf of ∞ -cat,

$$\mathcal{D}_{\mathrm{perf}}: X \mapsto \mathcal{D}_{\mathrm{perf}}(X)$$

satisfies Zariski descent.

Proof. $\mathcal{D}_{perf} \subseteq \mathcal{D}$ is sub presheaf. Since \mathcal{D} is a sheaf, \mathcal{D}_{perf} is a sheaf as long as it is deifned by a "local" property.

Theorem 10.6. X qcqs. Then every $\mathcal{F} \in \mathcal{D}(X)$ can written as a filtered colimit of perfect complexes.

$$F \simeq \lim_{\alpha \to \infty} \mathcal{F}_{\alpha}, \mathcal{F}_{\alpha} \in \mathcal{D}_{\mathrm{perf}}(X)$$

Variants.

- 1. $\mathcal{F} \in \mathcal{D}(X)_{>0}$ then \mathcal{F} can be taken connective.
- 2. If \mathcal{F} is supported on a closed subset $Z \subset X$ (with complement $X \setminus Z$ qc) then also \mathcal{F}_{α} can be taken supported on Z.

 \mathcal{F} is supported on Z iff $j^*\mathcal{F} \simeq 0, \ j: X \smallsetminus Z \hookrightarrow X$. We let

$$\mathcal{D}_Z(X) \subseteq \mathcal{D}(X)$$
$$\mathcal{D}_{\operatorname{perf},Z}(X) \subseteq \mathcal{D}_{\operatorname{perf}}(X)$$

10.2 Compactly generated ∞ -categories

Definition 10.7. C an ∞ -category with filtered colimits. An object $X \in C$ is *compact* if

$$\operatorname{Map}_{\mathcal{C}}(X, -) : \mathcal{C} \to \operatorname{Anim}$$

commutes with filtered colimits.

Remark 10.8. If C is stable ∞ -cat. Then $C_0 \subset C$ full subcategory of compact objects is *thick*. This follows from the following ingredients

- filtered colimits commutes with finite limits.
- A retract of an iso is an iso.

Example 10.9. If A is a commutative ring. Every $M \in \mathcal{D}(A)$ perfect is a compact object.

Proof. By remark, suffices to show for A as a module over itself since A generate $\mathcal{D}_{perf}(A)$ as a thick subcategory by definition. Now

$$\operatorname{Map}_{\mathcal{D}}(A)(A, -) \simeq (-)^{\circ} : \mathcal{D}(A) \to \operatorname{Anim}$$

commutes with filtered colimits.

Definition 10.10. C an ∞ -category. C is *compactly generated* if admits (small) colimits and every object $X \in C$ is a filtered colimit of compact objects $X_{\alpha} \in C_0$ where $C_0 \subset C$ is ess. small full subcategory.

10.11. Ind-completion. If C is a small stable ∞ -cat.

$$\operatorname{Ind}(\mathcal{C}) \coloneqq \operatorname{Fun}_{\operatorname{lex}}(\mathcal{C}^{op}, \operatorname{Anim}) = \{ \text{finite limit preserving} \}$$

Claim:

- 1. Ind \mathcal{C} is stable.
- 2. Yoneda $\mathcal{C} \hookrightarrow \operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Anim})$ factors through $\operatorname{Ind}(\mathcal{C})$, exhibiting $\operatorname{Ind}(\mathcal{C})$ as the free completion of \mathcal{C} by filtered colimits.
- 3. Factors through $\mathcal{C} \to \operatorname{Ind}(\mathcal{C})^{\omega} = \{ \operatorname{compact object in } \operatorname{Ind}(\mathcal{C}) \}$. This functor is an *idempotent completion*. i.e. it is ff. every object in the target is a direct summand(or retract) of an object in \mathcal{C} .

Remark 10.12. C is compactly generated iff \exists full subcategory $C_0 \in C$ (ess. small and admits finite colimits) s.t. $\operatorname{Ind}(C_0) \simeq C$ is an equivalence iff $\operatorname{Ind}(C^{\omega}) \xrightarrow{\simeq} C$ is an equivalence, where C^{ω} is full subcategory of compact objects.

Proposition 10.13. C an algebraic category.

- 1. $\operatorname{Anim}(\mathcal{C})$ is compactly generated.
- 2. If \mathcal{C} is additive, then Anim^{nc}(\mathcal{C}) is compactly generated.

Proof. 1. Anim(\mathcal{C}) \subseteq Fun($F_{\mathcal{C}}^{op}$, Anim) =: \mathcal{D} . There is a localization functor

 $L: \mathcal{D} \to \operatorname{Anim}(\mathcal{C})$

which is left adjoint to inclusion. Hence $L(\mathcal{D}^{\omega}) \subset \operatorname{Anim}(\mathcal{C})$ generates under filtered colimits under colimits and L preserves compact objects.

2. General fact: \mathcal{A} is compactly generated. Then

$$\operatorname{Stab}(\mathcal{A}) \coloneqq \varprojlim \left(\cdots \xrightarrow{\Omega} \mathcal{A} \xrightarrow{\Omega} \mathcal{A} \right)$$

is compactly generated.

Corollary 10.14. A a ring. $\mathcal{D}(A), \mathcal{D}(A)_{\geq 0}$ are compactly generated. Morever $M \in \mathcal{D}(A)$ is compact iff $M \in \mathcal{D}_{perf}(A)$.

Proof. Ind $(\mathcal{D}_{perf}(A)) \simeq \mathcal{D}(A)$. Hence $\mathcal{D}_{perf}(A) \xrightarrow{\simeq} \mathcal{D}(A)^{\omega}$.

Corollary 10.15. X scheme. $\mathcal{F} \in \mathcal{D}(X)$ is compact. Then \mathcal{F} is perfect.

Proof. Suffices to show that $\mathcal{F}_U \in \mathcal{D}(U)$ is perfect for all $U \subset X$ affine open $j : U \hookrightarrow X$. $\mathcal{F}_U \coloneqq j^*(\mathcal{F})$. j^* preserves compact objects since \mathbb{R}_{j_*} preserves (filtered) colimits. Since U affine, this implies \mathcal{F}_U is perfect. \Box

10.3 Grothendieck prestable ∞ -categories

Definition 10.16. \mathcal{C} ∞-category is called *presentable* if

• κ -compactly generated for some regular cardinal κ . (admits colimits and every object is a κ -filtered colimits of κ -compact objects in $\mathcal{C}_0 \subseteq \mathcal{C}$, full subcat, which is ess. small, κ -small colimits.)

Definition 10.17. A prestable ∞ -cat. C is *Grothendieck*

- \mathcal{C} presentable.
- filtered colimits are left exact iff $\Omega : \mathcal{C} \to \mathcal{C}$ commtues with filtered colimits.

Remark 10.18.

ab cat \leftrightarrow prestable ∞ Groth ab \leftrightarrow Groth prestable ∞

The map from rhs to lhs is

 $\mathcal{C}\mapsto \mathcal{C}^\heartsuit$

Proposition 10.19. Limits of a diagram Groth stable ∞ -cat with left exact colimit preserving functors is Groth. prestable.

Example 10.20. $\mathcal{D}(X)$ is Groth. prestable for all $X \in Sch$. $\mathcal{D}(X)_{\geq 0}$.

Theorem 10.21. [Lurc, C.6.3.3] \mathcal{C} a Groth. prestable ∞ -cat. \mathcal{C} is compactly generated iff for every nonzero $X \in \mathcal{C}$ there exists a compact object X_0 and a nonzero map $X_0 \to X$.

Example 10.22. $M \in \mathcal{D}(A)$ nonzero. There exists $x \in \pi_n(M), n \ge 0$ nonzer. This is equivalent to a nonzero map

 $A[n] \rightarrow M$

A[n] is a compact object because it is a sheaf of A.

Lemma 10.23. $X = \operatorname{Spec} A$ affine. $Z \subset \operatorname{Spec}(A)$ closed subset. $U \coloneqq X \setminus Z$. Then

$$\mathcal{D}_Z(X) = \{F \in \mathcal{D}(X) : \mathcal{F}|_U = 0\}$$

is compactly generated. Similarly for $\mathcal{D}_Z(X)$

Proof. Suffices to show for the connective case. Note

$$\mathcal{D}_Z(X)_{\geq 0} \simeq \operatorname{fib}\left(\mathcal{D}(X)_{\geq 0} \xrightarrow{j_*} \mathcal{D}(U)_{\geq 0}\right)$$

hence it is a Grothendieck prestable. Note $M \in \mathcal{D}(X)_{\geq 0}$ belongs to $\mathcal{D}_Z(X)_{\geq 0}$

$$\Leftrightarrow j^{*}(M) \simeq 0 \text{ in } \mathcal{D}(U)$$

$$\Leftrightarrow j^{*}_{*}(\pi_{n}(M)) \simeq 0 \text{ in } \mathcal{D}(U)^{\heartsuit}, \forall n \ge 0$$

$$\Leftrightarrow j^{*}_{\alpha}(\pi_{n}(M)) \simeq 0, \text{ where } U = \bigcup_{\alpha} U(f_{\alpha}), f_{\alpha} \in A, j_{\alpha} : U(f_{\alpha}) \to X$$

$$\Leftrightarrow \pi_{n}(M)[f_{\alpha}^{-1}] \simeq 0 \forall \alpha$$

$$\Leftrightarrow \pi_{n}(M) \text{ is } f_{\alpha}^{\infty} \text{-torsion} \forall \alpha, n$$

$$\Leftrightarrow \exists k \text{ sufficiently large } f_{\alpha}^{k} \pi_{n}(M) = 0 \text{ for all } \alpha$$

Check criterion. $M \in \mathcal{D}_Z(X)_{\geq 0}$ nonzero. $\alpha \in \pi_n(M)$ nonzero. Which is a map

$$A[n] \rightarrow M$$

Assume for simplicity, the sequence has only one element f(U = U(f)).

$$A \xrightarrow{f} A[n] \longrightarrow K_f$$

$$\bigwedge_{0} \downarrow_{\alpha}$$

$$M$$

The top map is a cofiber sequence. Here $\tilde{\alpha}$ exists iff $\alpha \circ f$ is null homotopic. $(f^k \circ \alpha = 0)$.

Note. $K_{f^k} \in \mathcal{D}(A)_{\geq 0}$ is also supported on V(f). This implies $K_{f^k} \in \mathcal{D}_{\text{perf},Z}(X)$.

In general, choose k >> 0. This implies

$$K_{(f^k_\alpha)_\alpha}[n] \to M$$

is nonzero map. "Koszul complex on $(f_{\alpha}^k)_{\alpha}$."

10.4 Compact generation of $\mathcal{D}(X)$

Theorem 10.24 (A). X qcqs scheme. The inclusion $\mathcal{D}_{perf}(X) \hookrightarrow X$ induces an inequivalences

$$\operatorname{Ind}(\mathcal{D}_{\operatorname{perf}}(X)) \xrightarrow{\simeq} X$$

In particular, $\mathcal{D}(X)$ is compactly generated and the compact objects are the perfect complexes.

• Variant: $Z \subseteq X$ closed subset with qc open complement $X \setminus Z$,

$$\operatorname{Ind}(\mathcal{D}_{\operatorname{perf},Z}(X)) \xrightarrow{\simeq} \mathcal{D}_Z(X)$$

Theorem 10.25 (B). X qcqs scheme $U \subset X$ qc open

- 1. Every $\mathcal{F} \in \mathcal{D}_{perf}(U)$ is a direct summand of some $j^*\mathcal{G}$ where $\mathcal{G} \in \mathcal{D}_{perf}(X)$.
- 2. Moreover the essential image of j^* is closed under extensions: for all

$$\mathcal{F}' \to \mathcal{F} \to \mathcal{F}''$$

an exact triangle in $\mathcal{D}_{perf}(U)$, where

$$\mathcal{F} \simeq j^* \mathcal{F}_X, \mathcal{F}'' \simeq j^* \mathcal{F}_X''$$

with $\mathcal{F}'_X, \mathcal{F}''_X \in \mathcal{D}_{\mathrm{perf}}(X)$, then also $\mathcal{F}' \simeq j^*(\mathcal{F}'_X), \quad \mathcal{F}'_X \in \mathcal{D}_{\mathrm{perf}}(X).$

• Variant: $Z \subseteq X$ closed, $X \setminus Z \subseteq X$ qc complement. If \mathcal{F} supported on $Z \cap U$, then \mathcal{F}_X is supported on U.

Lemma 10.26. If Theorem A holds for a scheme X, then theorem B. holds for X and arbitrary $U \subseteq X$. *Proof. Proof of 1.* $\mathcal{F} \in \mathcal{D}_{perf}(U)$. $\mathbb{R}j_*\mathcal{F} \in \mathcal{D}(X)$. Theorem A imples

$$j_*\mathcal{F} \simeq \varinjlim_{\alpha} G_{\alpha}, \quad \mathcal{G}_{\alpha} \in \mathcal{D}_{\mathrm{perf}}(X)$$

Apply j^* then

$$j^* \mathbb{R} j_*(\mathcal{F}) \simeq \varinjlim_{\alpha} j^*(\mathcal{G})$$

Recall $\mathcal{F} \simeq j^* \mathbb{R}_j(\mathcal{F})$, so $\mathcal{F} \simeq \varinjlim_{\alpha} j^*(\mathcal{G}_{\alpha})$.

$$\pi_0 \operatorname{Map}(\mathcal{F}, \mathcal{F}) \simeq \pi_0(\mathcal{F}, \varinjlim_{\alpha} j^* \mathcal{G}_{\alpha})$$
$$\simeq \varinjlim_{\alpha} \pi_0 \operatorname{Map}(\mathcal{F}, j^*(\mathcal{G}_{\alpha}))$$

This implies $\mathrm{id}_{\mathcal{F}}$ factors through $j^*\mathcal{G}_{\alpha}$. This shows that \mathcal{F} is a direct summand of $j^*(\mathcal{G}_{\alpha})$. *Proof of 2.* $\mathcal{F}' \to \mathcal{F} \to \mathcal{F}''$ in $\mathcal{D}_{\mathrm{perf}}(U)$. This implies we have exact sequence in $\mathcal{D}(U)$,

$$\mathbb{R}j_*(\mathcal{F}') \to \mathcal{R}j_*\mathcal{F} \to \mathcal{R}j_*(F'')$$

Claim: $\mathbb{R}j_*(\mathcal{F}'')$ is a filtered colimit of \mathcal{F}''_{α} such that $j^*(\mathcal{F}''_{\alpha}) \simeq \mathcal{F}''$.

 $^{{}^9}j^* : \operatorname{Perf}(X) \to \operatorname{Perf}(U)$

Indeed, let C be fiber of unit map

$$\mathcal{C} = \text{fiber} \to \mathcal{F}''_X \to \mathbb{R}j_*j^*(\mathcal{F}''_X) \simeq \mathbb{R}j_*(\mathcal{F}'')$$

Note $\mathcal{C} \in \mathcal{D}_{X \setminus U}(X)$ supported away from U. Hence, theorem A shows

$$\mathcal{C} \simeq \varinjlim_{\alpha} C_{\alpha}$$

 $C_{\alpha} \in \mathcal{D}_{\mathrm{perf}, X \smallsetminus U}(X).$

$$F''_{\alpha} \coloneqq \operatorname{cofib}(\mathcal{C}_{\alpha} \to \mathcal{C} \to \mathcal{F}''_{X}) \in \mathcal{D}_{\operatorname{perf}}(X)$$
$$j^{*}\mathcal{F}''_{\alpha} \simeq \operatorname{cofib}(0 \to \mathcal{F}'') \simeq \mathcal{F}''$$
$$\varinjlim_{\alpha} \mathcal{F}''_{\alpha} \simeq \operatorname{cofib}(\mathcal{C} \to \mathcal{F}''_{\alpha}) \simeq \mathbb{R}j_{*}(\mathcal{F}'')$$

Return to proof.

$$\mathcal{F}_X \xrightarrow{unit} \mathbb{R}j_*j^*(\mathcal{F}_X) \simeq \mathbb{R}j_*(\mathcal{F}) \to \mathbb{R}j_*(\mathcal{F}'') \simeq \varinjlim_{\alpha} \mathcal{F}'_{\alpha}$$

this factors through some map

 $f_{\alpha} : \mathcal{F}_X \to \mathcal{F}''_{\alpha}$ since \mathcal{F}_X is compact. Finally let $\mathcal{F}'_X := \operatorname{fib}(f_{\alpha} : \mathcal{F}_X \to \mathcal{F}''_{\alpha})$.

$$j^*(\mathcal{F}'_{\alpha}) \simeq \operatorname{fib}(\mathcal{F} \to \mathcal{F}'') \simeq \mathcal{F}$$

Proof. Of Theorem A. $\bigcup V_i = X$, affine open cover of X. $U_i = \bigcup_{j=1}^i V_j$.

$$\emptyset = U_0 \subset U_1 \subset \cdots \subset U_n = X$$

Induction on *n*. Let $\mathcal{F} \in \mathcal{D}(X), \mathcal{F}_i \coloneqq \mathcal{F}|_{U_i}$.

Claim: $\exists \beta_i : \mathcal{G}_i \to \mathcal{F}_i \text{ in } \mathcal{D}(U_i)_{\geq 0} \text{ with } \mathcal{G}_i \in \mathcal{D}_{perf}(U_i).$

 $U_1 = V_1$ is affine. Exists $\beta_1 : \mathcal{G}_1 \to \mathcal{F}_1$. $U_i = U_{i-1} \cup V_i$, V_i affine. From, $W := U_{i-1} \cap V$,

$$W \subset V_i$$

$$\subset \qquad \subset$$

$$U_{i-1} \subset U_i$$

we obtain cartesian square

$$\mathcal{D}(U_i) \longrightarrow \mathcal{D}(U_{i-1})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{D}(U_i) \longrightarrow \mathcal{D}(W)$$

 $W \subset V_i$ qc open. $\beta_{i-1}|_W, \mathcal{G}_{i-1}|_W \to \mathcal{F}_{i-1}|_W.$

Apply Theorem B (have this by lemma + affine case) to assume that $\mathcal{G}_{i-1}|_W$ lifts to $\mathcal{H} \in \mathcal{D}_{perf}(V_i)$. (possibly adding a summand to \mathcal{G}_{i-1}),

Similarly lift, $v_0 \coloneqq \beta_{i-1}|_W : \mathcal{H}_{U \cap V} \to \mathcal{F}|_{U \cap V}$ to $v : \mathcal{H} \to \mathcal{F}|_V$ in $\mathcal{D}_{perf}(V)$.

Finally apply descennt to glue $j: \mathcal{H} \to \mathcal{F}|_{V_i}$ on V_i and $\beta_{i-1}: \mathcal{G}_{i-1} \to \mathcal{F}|_{U_{i-1}}$.

11 Waldhausen K-Theory

11.1 Waldhausen's S_{\bullet} construction

Definition 11.1. A Waldhausen ∞ -category is an ∞ -category \mathcal{C} with zero object with a class of cofibrations.

- 1. The class of cofibrations cotains all isos and is closed under composition.
- 2. for all $X \in \mathcal{C}, 0 \to X$ is a cofibration.
- 3. Cofibrations are closed under cobase change along any morphism.

Example 11.2. If C is (pre)stable then there is a canonical Waldhausen structure where all maps are cofibrations. ¹⁰

11.3. S_{\bullet} construction. C Waldhausen ∞ -cat.

$$I_n \coloneqq \{(i,j) \in [n] \times [n] : i \le j\}$$

 $\operatorname{Gap}_{[n]}(\mathcal{C}) \coloneqq \infty$ -cat diagrams $X : I_n \to \mathcal{C}$ satisfying:

- 1. $X_{i,i}$ is zero object for all *i*.
- 2. for all $i \leq j \leq k$, $X_{i,j} \rightarrow X_{i,k}$ is cofibration

$$\begin{array}{ccc} X_{i,j} & \longrightarrow & X_{i,k} \\ & & & \downarrow \\ & & & \downarrow \\ X_{j,j} & \longrightarrow & X_{j,k} \end{array}$$

is cocartesian.

$$S_n(\mathcal{C}) \coloneqq \left(\operatorname{Gap}_{[n]}(\mathcal{C})\right)^{\simeq} \in \operatorname{Anim}$$

as n varies, we obtain

$$S_{\bullet}(\mathcal{C}): \Delta^{op} \to \operatorname{Anim}$$

Definition 11.4. $K(\mathcal{C}) \coloneqq \Omega | S_{\bullet}(\mathcal{C}) | \in \text{Anim}$

Example 11.5. $X \in Sch.$ $K(X) \coloneqq K(\mathcal{D}_{perf}(X)).$ $(K(\mathcal{D}_{perf}(X))_{\geq 0} \simeq K(X)).$

$$K_Z(X) \coloneqq K(\mathcal{D}_{\operatorname{perf},Z}(X))$$

¹⁰This is similar to the Waldhausen structure defined in the classical case of perfect complexes.

11.2 The fibration theorem

Theorem 11.6. (Waldhausen fibration theorem; Barwick). Given a functor $i : \mathcal{C} \to \mathcal{D}$ of compactly generated stable ∞ -cat. $L : \mathcal{C} \to \mathcal{D}$ functor of compactly generated stable ∞ -category admitting a ff right adjoint $i: \mathcal{D} \to \mathcal{C}$. Assume that L preserves compact objects (iff i preserves colimits)

$$\mathcal{C}_0 \coloneqq \ker(\mathcal{C}^{\omega} \xrightarrow{L^{\omega}} \mathcal{D}^{\omega})$$

induced functors on comapct objects. There exists a fiber sequence of anima

$$K(\mathcal{C}_0) \to K(\mathcal{C}^\omega) \to K(\mathcal{D}^\omega)$$

Remark 11.7. There is an extension of this by a note of Marc Hoyois. *K*-theory of dualizable categories.

11.3 Localization and descent theorems

Theorem 11.8. X be qcqs. $U \subseteq X$ qc open. $j: U \to X$. We have a fiber sequence in Anim

$$K_Z(X) \to K(X) \xrightarrow{j^*} K(U)$$

where the first map is inclusion of the perfect objects.

Proof. Consider

$$\mathcal{D}(X) \xrightarrow[\mathbb{R}_{j_{\star}}]{j^{\star}} \mathcal{D}(U)$$

Also, \mathbb{R}_{j_*} preserves colimits.

$$\ker(j^*:\mathcal{D}_{\mathrm{perf}}(X)\to\mathcal{D}_{\mathrm{perf}}(U))=:\mathcal{D}_{\mathrm{perf},Z}(U)$$

compactly generated by Theorem A.

Remark 11.9.

$$\mathcal{D}_{\operatorname{perf}}(X)/\mathcal{D}_{\operatorname{perf},Z}(X) \to \mathcal{D}_{\operatorname{perf}}(U)$$

is an idempotent completion. That is, fully faihtful and ess. surj. up to direct summands.

Remark 11.10. This is in fact a fiber sequence of connective spectra.

Theorem 11.11. (Zariski descent).

• The presheaf of anima

$$K: \operatorname{Sch}_{qcqs}^{op} \to \operatorname{Anim}$$

satisfies Zariski descent.

- In particular: for every $X \in \operatorname{Sch}_{qcqs}, K : (X_{\operatorname{Zar}})^{op} \to \operatorname{Anim}$ also satisfies descent.
- Mayer Vietoris. $X = U \cup V$ a open covering of qc open then

$$K(X) \longrightarrow K(U)$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$K(V) \longrightarrow K(U \cap V)$$

Proof. Suffices to show Mayer-Vietoris claim. $Z = X \setminus U, Z' = V \setminus U \cap V$. We have fiber sequence

$$K_Z(X) \longrightarrow K(X) \longrightarrow K(U)$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$K_{Z'}(V) \longrightarrow K(V) \longrightarrow K(U \cap V)$$

The square is cartesian if and only if it induces isomorphisms on homotopy fibers. The horizontal rows are fiber sequences by localization theorem.

The map

$$K_Z(X) \to K_{Z'}(V)$$

is induced by $\mathcal{D}_{\operatorname{perf},Z}(X) \to \mathcal{D}_{\operatorname{perf},Z'}(V)$ Zariski descent on $\mathcal{D}_{\operatorname{perf}}$ implies we have cartesian square on bottom right

the left most induced map is an equivalence (formal consequence¹¹). In particular the induced map on K theory is an equivalence.

Remark 11.12. Étale descent is true in rational *K*-theory. Integrally, this is the content of Bloch Kato conjecture.

¹¹Harry. 3-3 square + interchangeable limits.

References

[ARV10] J Adámek, J Rosický, and E. M Vitale (2010). $\uparrow 3$

[Cis20] D. C Cisinki, Higher Categories and Homotopical Algebra (2020). $\uparrow 2,\,7$

[ČS19] K Česnavičius and P Scholze (2019). $\uparrow 3$

[Lura] J Lurie, Higher Topos Theory. $\uparrow 2,\,3,\,3.11,\,7$

[Lurb] _____, Higher Algebra. ↑4, 7.2, 7, 7.12, 7.13

[Lurc] _____, Spectral Algebraic Geometry. ¹4, 10.21