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Abstract. We construct the étale motivic Borel–Moore homology of
derived Artin stacks. Using a derived version of the intrinsic normal cone,
we construct fundamental classes of quasi-smooth derived Artin stacks
and demonstrate functoriality, base change, excess intersection, and
Grothendieck–Riemann–Roch formulas. These classes also satisfy a gen-
eral cohomological Bézout theorem which holds without any transversity
hypotheses. The construction is new even for classical stacks and as one
application we extend Gabber’s proof of the absolute purity conjecture
to Artin stacks.
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Introduction

In this paper we revisit the foundations of the theory of virtual fundamental
classes using the language of derived algebraic geometry.
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Quasi-smoothness. Let X be a smooth algebraic variety of dimension m
over a field k. Any collection of regular functions f1, . . . , fn ∈ Γ(X,OX)
determines a quasi-smooth derived subscheme Z = Z(f1, . . . , fn) of X. Its
underlying classical scheme Zcl is the usual zero locus, but Z admits a perfect
2-term cotangent complex of the form

LZ = (O⊕nZ → ΩX∣Z)

whose virtual rank encodes the virtual dimension d = m − n. Every quasi-
smooth derived Artin stack Z is given by this construction, locally on some
smooth atlas.

To any such Z, the main construction of this paper assigns a virtual
fundamental class [Z]vir. More generally, for any quasi-smooth morphism
f ∶ X → Y of derived Artin stacks, we define a relative virtual fundamental
class [X /Y]vir.

The normal bundle stack. We begin in Sect. 1 by introducing a derived
version of the intrinsic normal cone of Behrend–Fantechi [BF]. For any
quasi-smooth morphism f ∶ X → Y of derived Artin stacks, this is a vector
bundle stack NX/Y over X . When X and Y are classical 1-Artin stacks
and f is a local complete intersection morphism that is representable by
Deligne–Mumford stacks, then NX/Y is the relative intrinsic normal cone
defined in [BF, Sect. 7]. If f is not representable by Deligne–Mumford stacks,
then NX/Y is only a 2-Artin stack. The key geometric construction, which is
joint with D. Rydh, is called “deformation to the normal bundle stack”. For
any quasi-smooth morphism f ∶ X → Y it provides a family of quasi-smooth
morphisms parametrized by A1, with generic fibre f ∶ X → Y and special
fibre the zero section 0 ∶ X → NX/Y .

Motivic Borel–Moore homology theories. In Sect. 2 we construct étale
motivic Borel–Moore homology theories on derived Artin stacks. If SH(S)
denotes Voevodsky’s stable motivic homotopy category over a scheme S, any
object F ∈ SH(S) gives rise to relative Borel–Moore homology groups

HBM
s (X/S,F(r)) ∶= HomSH(S)(1S(r)[s], f∗f !(F)),

bigraded by integers r, s ∈ Z (where (r) denotes the Tate twist), where X
is a locally of finite type S-scheme with structural morphism f ∶ X → S.
It was observed in [De2] that as X and S vary, these groups behave just
like a bivariant theory in the sense of [FM] except that they are bigraded.
Appropriate choices of the coefficient F give rise to bivariant versions of such
theories as motivic cohomology, algebraic cobordism, étale cohomology with
finite or adic coefficients, and singular cohomology. Using the extension of SH
to derived schemes constructed in [Kh1], we also obtain derived extensions
of all these bivariant theories. Moreover, for coefficients F satisfying étale
descent, these bivariant theories extend further to derived Artin stacks (this
is done by extending the étale-local motivic homotopy category SHét and
its six operations to derived Artin stacks, see Appendix A). In Subsect. 2.4
we demonstrate the expected properties: long exact localization sequences,
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homotopy invariance for vector bundle stacks, and Poincaré duality for
smooth stacks.

Fundamental classes. Sect. 3 contains our construction of the virtual class
[X /Y]vir of a quasi-smooth morphism f ∶ X → Y of relative virtual dimension
d. Assume F is oriented for simplicity. The idea is that there are canonical
isomorphisms

HBM
2d (X/Y,F(d)) ≃ HBM

2d (Xcl/Ycl,F(d))
through which the virtual class corresponds to a more intrinsic fundamental
class [X /Y] ∈ HBM

2d (X/Y,F(d)). The latter is constructed, much as in
Fulton’s intersection theory, by using deformation to the normal bundle stack
to define a specialization map

sp
X/Y

∶ HBM
s (Y/S,F(r)) → HBM

s (NX/Y/S,F(r)),
see Subsect. 3.1. By homotopy invariance for vector bundle stacks, the target
is identified with HBM

s+2d(X/Y,F(r + d)), so we get a Gysin map

(0.1) f ! ∶ HBM
s (Y/S,F(r)) → HBM

s+2d(X/S,F(r + d)).
The fundamental class [X /Y] is the image of the unit 1 ∈ HBM

0 (Y/Y,F),
where we take S = Y.

The two key properties of the fundamental class are functoriality and
stability under arbitrary derived base change, see Theorems 3.12 and 3.13.
We also have excess intersection, self-intersection, and blow-up formulas
(Subsect. 3.2). In the sequel we intend to prove analogues of the virtual
Atiyah–Bott localization and cosection formulas in this framework.

Non-transverse Bézout theorem. The fundamental classes satisfy a co-
homological Bézout theorem that holds without any transversity hypotheses
(Subsect. 3.4). For schemes, it can be stated in the Chow group as follows.
Let X be a smooth quasi-projective scheme over a field k. Let f ∶ Y → X
and g ∶ Z→ X be quasi-smooth projective morphisms of derived schemes of
relative virtual dimensions −d and −e, respectively. Then the intersection
product of the fundamental classes [Y] ∈ Ad(X) and [Z] ∈ Ae(X) is given by
the fundamental class of the derived fibred product:

(0.2) [Y] ⋅ [Z] = [Y R×
X

Z]

in Ad+e(X).
If k is of characteristic zero, this formula completely characterizes the

intersection product in A∗(X), since by resolution of singularities the Chow
group is generated by fundamental classes [Z] where f ∶ Z→ X is a projective
morphism with Z smooth (so that f is automatically quasi-smooth).

Grothendieck–Riemann–Roch. In Subsect. 3.5 we prove a generalization
of the Grothendieck–Riemann–Roch theorem to derived Artin stacks. For a
locally noetherian derived Artin stack X , denote by G(X) the G-theory of
X , i.e., the Grothendieck group of coherent sheaves on X . Let f ∶ X → Y be
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a quasi-smooth morphism of derived Artin stacks, locally of finite type over
some regular noetherian base scheme. Then there is a commutative diagram

(0.3)

G(Y) G(X)

A∗(Y)Q A∗(X)Q,

f∗

τY τX
TdX/Y ∩f !

where TdX/Y is the Todd class of the relative cotangent complex LX/Y .

In particular, if X is a quasi-smooth derived Artin stack over a field, this
gives the following formula for the fundamental class of X in A∗(X)Q:

(0.4) [X ] = Td−1
X
∩τX (OX ).

Through the canonical isomorphisms A∗(X)Q ≃ A∗(Xcl)Q and G(X) ≃
G(Xcl), this becomes the formula

[X ]vir = (Tdvir
X

)−1 ∩ (∑
i∈Z

(−1)i ⋅ τXcl
(πi(OX )))

in A∗(Xcl)Q, relating the virtual class [X ]vir ∈ A∗(Xcl)Q with the K-theoretic

fundamental class in G(Xcl). The virtual Todd class Tdvir
X

is the Todd class
of the perfect complex LX ∣Xcl

on Xcl. This extends the formula predicted by
Kontsevich in the case of schemes [Ko, 1.4.2].

Absolute purity. Our construction of fundamental classes is interesting
even when we restrict to classical algebraic geometry; in this case quasi-
smoothness translates to being a local complete intersection morphism (which
need not admit a global factorization through a regular immersion and smooth
morphism). For example, we get Gysin maps for proper lci morphisms
between Artin stacks in étale cohomology and mixed Weil cohomology theories
such as Betti and de Rham cohomology. In terms of the six operations, if
f ∶ X → Y is an lci morphism of virtual dimension d between Artin stacks,
then the fundamental class can be viewed as a canonical morphism

(0.5) f∗F(d)[2d] → f !(F)
for any coefficient F . In the context of étale cohomology, such morphisms
were constructed previously by Gabber [Fu], [ILO, Exp. XVI] in the case of
schemes and assuming the existence of a global factorization of f . Thus taking
F to be the étale motivic cohomology spectrum Λét (with coefficients in
Λ = Z/nZ, n invertible on Y) gives a generalization of Gabber’s construction.
In Subsect. 3.6 we prove that the morphism (0.5) is invertible when F = Λét

and X and Y are regular Artin stacks. This extends Gabber’s proof of the
absolute purity conjecture to Artin stacks (and drops the global factorization
hypothesis in the case of schemes).

Related work. The yoga of fundamental classes in motivic bivariant theo-
ries was developed in [De2] and [DJK]. This paper extends these constructions
on one hand from classical to derived algebraic geometry, and on the other
hand from schemes to algebraic stacks (at least for étale coefficients).
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The notion of perfect obstruction theory introduced by K. Behrend and
B. Fantechi [BF] is a useful approximation to a quasi-smooth derived struc-
ture on a scheme or Deligne–Mumford stack, and actually suffices for the
construction of virtual fundamental classes on Deligne–Mumford stacks. This
construction was done in [BF] in Chow groups, and has been refined to al-
gebraic cobordism and other Borel–Moore homology theories recently by
M. Levine [Le2] and Y.-H. Kiem and H. Park [KP]. Our construction agrees
with the P.O.T. approach when both are defined (see Subsect. 3.3), but it is
worth noting that a quasi-smooth derived Artin stack typically has a 3-term
cotangent complex, so that the P.O.T. formalism does not apply (in fact,
there is no associated intrinsic normal cone in the world of classical 1-stacks).

Virtual fundamental classes have been studied using the language of
derived algebraic geometry previously in the setting of algebraic cobordism
by P. Lowrey and T. Schürg [LS]. They were also studied using the older
language of dg-schemes by I. Ciocan-Fontanine and M. Kapranov [CK] in
rational Chow groups and G-theory. These approaches only work for derived
schemes and also require other unpleasant hypotheses such as existence of a
characteristic zero base field and embeddings into smooth ambient schemes.
The Bézout formula (0.2) mentioned above was inspired by a similar formula
announced by J. Lurie [Lu] in Betti cohomology.

Classical Borel–Moore homology was recently extended to Artin stacks
by M. Kapranov and E. Vasserot [KV], for the purpose of defining a coho-
mological Hall algebra whose underlying vector space is the Borel–Moore
homology of the moduli stack of coherent sheaves on a surface. Our formal-
ism gives a streamlined approach to the construction of this algebra, whose
multiplicative structure arises from the quasi-smooth structure on the moduli
stack. Moreover it shows that the same structure exists on the Borel–Moore
homology with coefficients in any étale motivic spectrum.

Acknowledgments. During the very long gestation period of this paper,
I benefited from helpful discussions with Denis-Charles Cisinski, Frédéric
Déglise, Marc Hoyois, Fangzhou Jin, Marc Levine, Mauro Porta, Charanya
Ravi, Marco Robalo, and especially David Rydh. Thanks to the organizers of
the June 2019 summer school “New perspectives in Gromov-Witten theory”
in Paris which made some of the above conversations possible and where I
was inspired to finally write up these results. Thanks to the Institute for
Advanced Study which hosted me in July 2019 while the first draft of this
paper was being finished.

1. The intrinsic normal bundle

1.1. Stacks. In this paper, we define a stack to be a “higher stack” in the
sense of [HS]. That is, it is a functor

R↦ X(R)
assigning to any commutative ring R an ∞-groupoid X(R) of R-valued
points, and satisfying hyperdescent with respect to the étale topology (in
the sense of ∞-category theory, see e.g. [To2, p. 183]).
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We say X is 0-Artin if it is (representable by) an algebraic space. We
define k-Artin stacks inductively, following [To1, §3.1].

For an integer k ⩾ 0, a morphism f ∶ X → Y is k-representable if for
every k-Artin Y ′ and every morphism Y ′ → Y , the fibred product X ×Y Y ′ is
k-Artin. An k-representable morphism f is smooth if for every scheme Y,
every morphism Y → Y , and every smooth atlas X→ X ×Y Y, the composite
X → X ×Y Y → Y is a smooth morphism of schemes. A stack X is (k + 1)-
Artin if its diagonal X → X ×X is representable by k-Artin stacks, and there
exists a scheme X and a morphism X→ X (automatically k-representable)
which is smooth and surjective. The morphism X → X is called a smooth
atlas for X .

An k-Artin stack X always takes values in k-groupoids: for every com-
mutative ring R, the ∞-groupoid X(R) is k-truncated. We say a stack is
Artin if it is k-Artin for some k ⩾ 0. Artin stacks in this sense form an
∞-category, whose full subcategory spanned by 1-Artin stacks is equivalent
to the (2,1)-category of Artin stacks in the usual sense.

Now replace the category of commutative rings by its nonabelian derived
∞-category, i.e., the ∞-category of simplicial commutative rings. This is the
natural target for derived functors on the nonabelian category of commutative
rings, such as the derived tensor product. A simplicial commutative ring R
has an underlying ordinary commutative ring π0(R) as well as π0(R)-modules
πi(R). We say R is discrete if πi(R) = 0 for all i > 0 (i.e., R ≃ π0(R)); the
discrete simplicial commutative rings span a full subcategory equivalent to
the ordinary category of commutative rings. The notions of étale and smooth
homomorphism admit natural extensions to simplicial commutative rings.
See [SAG, Chap. 25] or [To1, §4].

A derived stack X is a functor R ↦ X(R), assigning an ∞-groupoid
of R-points to every simplicial commutative ring R, that satisfies étale
hyperdescent. Derived k-Artin and Artin stacks are defined following the
pattern outlined above, see e.g. [To1, §5.2] for details.

1.2. Vector bundle stacks. Let X be a derived Artin stack and E a perfect
complex on X of Tor-amplitude [−k,1], for some integer k ⩾ −1. The
associated vector bundle stack

π ∶ VX (E[−1]) → X

is the moduli stack of co-sections of E[−1]. That is, for any affine de-
rived scheme S over X , the ∞-groupoid of X -morphisms S→VX (E[−1]) is
naturally equivalent to the ∞-groupoid of OS-linear morphisms of perfect
complexes E[−1]∣S → OS.

Since E[−1] is perfect of Tor-amplitude [−k−1, 0], VX (E[−1]) is a smooth
(k + 1)-Artin derived stack over X of relative dimension −d, where d is the
virtual rank of E . See [To2, Subsect. 3.3, p. 201].

1.3. Normal bundle stacks. The normal bundle stack is a derived version
of the relative intrinsic normal cone of [BF].
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A morphism f ∶ X → Y of derived Artin stacks is quasi-smooth if it is
locally of finite presentation and the relative cotangent complex LX/Y is of
Tor-amplitude (−∞,1]. Note that we use homological grading: this means
that, for every discrete quasi-coherent sheaf E on X , we have

πi(LX/Y ⊗L
OX
E) = 0

for i > 1. If X = X and Y = Y are derived schemes, this is equivalent to
the following condition: Zariski-locally on X, f factors through a smooth
morphism M → Y and a morphism X → M which exhibits X as the de-
rived zero-locus of some functions on M [KR, 2.3.14]. If f ∶ X → Y is
k-representable, then it is quasi-smooth if and only if for every derived
scheme Y, every morphism Y → Y , and every smooth atlas X→ X ×Y Y, the
composite X→ X ×Y Y → Y is a quasi-smooth morphism of derived schemes.
The relative virtual dimension of a quasi-smooth morphism f ∶ X → Y is

vd(X/Y) ∶= rk(LX/Y),

the virtual rank (Euler characteristic) of the relative cotangent complex.

Let f ∶ X → Y be a k-representable quasi-smooth morphism. The cotangent
complex LX/Y is perfect of Tor-amplitude [−k,1], so the associated vector
bundle stack VX (LX/Y[−1]) is a smooth (k+1)-Artin stack of relative virtual
dimension −vd(X/Y).

Definition 1.1. Let f ∶ X → Y be a quasi-smooth morphism of derived Artin
stacks. The normal bundle stack is the vector bundle stack

NX/Y = VX (LX/Y[−1]) → X .

If f is a closed immersion, then LX/Y[−1] is of Tor-amplitude [0,0], and
the normal bundle stack is just the normal bundle. If f is smooth, then
LX/Y[−1] is of Tor-amplitude (−∞,−1], and the normal bundle stack is the
classifying stack of the tangent bundle TX/Y . If f factors through a closed

immersion i ∶ X → Y ′ and a smooth morphism p ∶ Y ′ → Y, then the normal
bundle stack is the quotient

NX/Y = [NX/Y ′/i∗TY ′/Y].

Proposition 1.2.

(i) The construction NX/Y → X is stable under derived arbitrary base change in
X . That is, for any homotopy cartesian square of derived Artin stacks

X ′ Y ′

X Y

f ′

f

with f quasi-smooth, there is a canonical isomorphism

NX/Y

R×
X

X ′ → NX ′/Y ′

of derived Artin stacks over X ′.
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(ii) Suppose given a commutative square

X Y

X Y

i

p q

f

with f quasi-smooth, p and q smooth surjections with X and Y schematic,
and i a quasi-smooth closed immersion. Then NX/Y is the quotient of the
groupoid

NČ(X/X)●/Č(Y/Y)● ∶= [⋯ →→→ NX×
R
X X/Y×

R
Y Y ⇉ NX/Y] ,

i.e., the geometric realization of this simplicial diagram.

Proof. The first claim follows from the fact that the cotangent complex is
stable under derived base change [Lu, Prop. 3.2.10]. The second follows from
the fact that the cotangent complex satifies descent for smooth surjections
[Bh, Cor. 2.7]. �

1.4. Deformation to the normal bundle stack. For any quasi-smooth
morphism f ∶ X → Y, there is a canonical A1-deformation to the zero
section 0 ∶ X → NX/Y , generalizing the classical construction of Verdier. This
construction is joint with D. Rydh.

Theorem 1.3. Let f ∶ X → Y be a quasi-smooth morphism of derived Artin
stacks.

(i) There exists a quasi-smooth derived Artin stack DX/Y over Y ×A1, and a
quasi-smooth morphism

X ×A1 → DX/Y

over Y ×A1. The fibre over Gm = A1 ∖ {0} is the quasi-smooth morphism
X × Gm → Y × Gm and the fibre over {0} is the quasi-smooth morphism
0 ∶ X → NX/Y .

(ii) The construction DX/Y → Y is stable under arbitrary derived base change in
Y.

In the case where f is a closed immersion, DX/Y was already constructed in
[KR, Thm. 4.1.13]. For a general quasi-smooth morphism with a presentation
as in Proposition 1.2(ii), it can be described as the quotient of the groupoid

DČ(X/X)●/Č(Y/Y)● ∶= [⋯ →→→ DX×
R
X X/Y×

R
Y Y ⇉ DX/Y] .

Without choosing a presentation, it can be described simply as the Weil
restriction

DX/Y = Res
Y/Y×A1(X)

of X along Y = Y × {0} → Y ×A1. Details will be provided elsewhere.
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2. Motivic Borel–Moore homology of derived stacks

In this section we construct, given a “coefficient” F over a derived Artin
stack S, a (relative) Borel–Moore homology theory with coefficients in F .
The main example is F = QS , the rational motivic cohomology spectrum.
The construction requires a formalism of six operations on derived Artin
stacks such as that developed in Appendix A.

2.1. Definition and examples. Let S be a derived Artin stack and let
F ∈ SHét(S) be an étale motivic spectrum (see Appendix A).

Definition 2.1. For a derived Artin stack X locally of finite type over S
with structural morphism f ∶ X → S, we define Borel–Moore homology with
coefficients in F by the formula

(2.2) HBM
s (X/S,F(r)) = HomSHét(S)

(1S(r)[s], f∗f !F), r, s ∈ Z

where 1S ∈ SHét(S) is the monoidal unit. Similarly we define cohomology
with coefficients in F by

(2.3) Hs(X ,F(r)) = HomSHét(S)
(1S , f∗f∗F(r)[s])

for any derived Artin stack X over S.

The observation that Hs(X ,F(r)) = HBM
−s (X/X ,F(−r)) (by adjunction)

allows us to pass freely from Borel–Moore homology statements to their
cohomological counterparts, which is why we generally stick with the former
perspective. For an immersion i ∶ Y → X , we have also cohomology with
support:

(2.4) Hs
Y
(X ,F(r)) = HBM

−s (X/Y,F(−r)).

Remark 2.5. The Borel–Moore homology groups HBM
s (X/S,F(r)) only

depend on the homotopy category (underlying triangulated category) of the
stable ∞-category SHét(S). A more refined object is the spectrum (in the
sense of homotopical algebra)

RΓBM(X/S,F(r)) ∶= MapsSHét(S)
(1S(r), f∗f !F),

defined using the spectral enrichment of SHét(S). The groups HBM
s (X/S,F(r))

are the homotopy groups πsRΓBM(X/S,F(r)). Similarly, there is a coho-
mology spectrum

RΓ(X ,F(r)) ∶= MapsSHét(S)
(1S(r), f∗f∗F).

Remark 2.6. Let S = S be a derived algebraic space and X a locally of
finite type derived Artin stack over S. The formula (A.4) implies that the
Borel–Moore spectra RΓBM(X/S,F(r)) can be computed by the homotopy
limit

(2.7) RΓBM(X/S,F(r)) = lim←Ð
u

RΓBM(X/S,F(r + du))[−2du]

over the ∞-category of smooth morphisms u ∶ X→ X with X a scheme, where
du is the relative dimension of u. Similarly, the cohomology spectrum is
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computed as the homotopy limit

(2.8) RΓ(X ,F(r)) = lim←Ð
u

RΓ(X,F(r)).

Alternatively, we can fix a smooth atlas X → X and use (A.3) to write
RΓBM(X/S,F(r)) as the homotopy limit or totalization of the cosimplicial
diagram

(2.9) RΓBM(X/S,F(r + d))[−2d] ⇉RΓBM(X R×
X

X/S,F(r + 2d))[−4d]

→→→RΓBM(X R×
X

X
R×
X

X/S,F(r + 3d)[−6d]) →→→→ ⋯

where d = vd(X/X), and again similarly for RΓ(X ,F(r)).
Example 2.10. Let Q denote the rational motivic cohomology spectrum
over Spec(Z) (see [CD1, Chap. 14], [Sp]). It satisfies étale (hyper)descent
[CD2, Prop. 2.2.10], so for any derived Artin stack S we may define QS as
its inverse image along S → Spec(Z). The groups

HBM
s (X/S,Q(r)), Hs(X ,Q(r))

are simply called the (rational) motivic Borel–Moore homology and motivic
cohomology groups. If S is the spectrum of a field k and X = X is a quasi-
projective classical scheme, then motivic Borel–Moore homology is computed
as the cohomology of Bloch’s cycle complex; in particular

HBM
2n (X/Spec(k),Q(n)) = An(X)Q.

For X a classical scheme locally of finite type over a field k, it is com-
puted by the Zariski hypercohomology of the same complex. More pre-
cisely, RΓBM(X/Spec(k),Q(r)) is the Zariski localization of Bloch’s cy-
cle complex. Thus for X an Artin stack locally of finite type over k,
HBM
∗

(X/Spec(k),Q(r)) is computed according to the formula (2.9) by the
étale hypercohomology of the complex

lim←Ð
[m]∈∆

zr+md(X
R×
X

⋯R×
X

X,∗)Q[−2md]

where there are m terms in the fibred product. These are thus the same as
the rational higher Chow groups defined by Joshua [Jo], and they agree with
the rationalization of Kresch’s Chow groups [Kr].

Example 2.11. Integrally, we can take the étale motivic cohomology spec-
trum Zét. More generally for every commutative ring Λ, let Λét denote
the étale hyperlocalization of the Λ-linear motivic cohomology spectrum
and write Λét

S
for its inverse image to any derived Artin stack S (along the

structural morphism S → Spec(Z)). The resulting groups are called étale mo-
tivic Borel–Moore homology and étale motivic cohomology (or “Lichtenbaum
motivic cohomology”), respectively:

HBM
s (X/S,Λét(r)), Hs(X ,Λét(r)).

Rationally these give back the groups just defined above since QS already
satisfies étale hyperdescent. With finite coefficients Λ = Z/nZ it follows from
Remark 2.6 and [CD2, Thm. 4.5.2] that these agree with étale Borel–Moore
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homology and étale cohomology [La, Ol, LO1], over classical Artin stacks
with n invertible. Taking Z∧

`,S to be the `-adic completion of ZS as in [CD2,

Subsect. 7.2], for a prime `, we also recover `-adic Borel–Moore homology
and cohomology, respectively.

Example 2.12. Let MGL denote Voevodsky’s algebraic cobordism spec-
trum. If X is a smooth algebraic space over a perfect field k, then the
cohomology groups H2n(X,MGL(n)) are computed for n ⩾ 0 by the Nis-
nevich hypercohomology of a certain presheaf of spectra built out of finite
quasi-smooth derived schemes over X [EHKSY]. If k is of characteristic zero,
then they are identified with Levine–Morel’s algebraic cobordism Ωn(X), and
moreover the Borel–Moore homology groups HBM

2n (X,MGL(n)) are identified
with Ωn(X) for all n ∈ Z, also for X singular [Le1].

Let MGLét denote the étale hyperlocalization of MGL. For a derived Artin
stack S, let MGLét

S
denote the inverse image along the structural morphism

S → Spec(Z). This gives étale algebraic cobordism and bordism groups for
derived Artin stacks

HBM
s (X/S,MGLét(r)), Hs(X ,MGLét(r)).

If X is smooth over a perfect field k, then H2n(X ,MGLét(n)) is computed us-
ing the construction of Remark 2.6 by the same presheaf of spectra mentioned
above (for n ⩾ 0).

The rationalization MGLQ already satisfies étale hyperdescent (MGLQ ≃
MGLét

Q) and is identified with

MGLQ ≃ Q[c1, c2, . . .],
where ci is a generator of bidegree (2i, i), by [NSØ]. We thus define MGLQ,S

as the inverse image of MGLQ for any derived Artin stack S. There are
canonical maps

HBM
s (X/S,MGLét(r)) → HBM

s (X/S,MGLQ(r)) → HBM
s (X/S,Q(r))

for all X locally of finite type over S.

Example 2.13. Let KGLét
S

denote the étale hyperlocalization of the algebraic
K-theory spectrum. Assuming that S is a regular (classical) stack, such
as the spectrum of Z or a field, the Borel–Moore homology represented by
KGLét

S
coincides with étale hypercohomology with coefficients in G-theory,

and the proper covariance and smooth Gysin maps are compatible with the
respective intrinsic operations in G-theory [Ji, Cor. 3.3.7]. Note that in this
case the formula of Remark 2.6 simplifies since there are Bott periodicity
isomorphisms

KGL(n)[2n] ≃ KGL

for all n ∈ Z.

Remark 2.14. If we restrict to derived schemes or algebraic spaces, then we
are allowed to take coefficients that do not satisfy étale descent, such as the
integral motivic cohomology spectrum Z or the algebraic cobordism spectrum
MGL. Indeed, for derived algebraic spaces the formalism of six operations is
already available before imposing étale descent (see Subsect. A.1). The basic
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operations discussed in the next section will also carry over to that setting.
Moreover, the fundamental class can still be defined at least for smoothable
quasi-smooth morphisms (Variant 3.11).

2.2. Basic operations. The formalism of six operations (see Appendix A)
immediately yields the following structure on Borel–Moore homology groups.
Here F is any coefficient defined over S, though for simplicity we assume that
F is multiplicative (a motivic ring spectrum) and oriented1. In particular
there is a unit element

1 ∈ HBM
0 (X/X ,F) = H0(X ,F)

induced by the unit ηF ∶ 1S → F .

2.2.1. Proper direct image. If f ∶ X → Y is a representable proper morphism
of derived Artin stacks locally of finite type over S, then there are functorial
direct image homomorphisms

f∗ ∶ HBM
s (X/S,F(r)) → HBM

s (Y/S,F(r)).
These are induced by the co-unit f∗f

! = f!f
! → id. If F satisfies h-descent,

e.g., F is Q or MGLQ, then by Theorem A.7 this extends to arbitrary
proper morphisms f ∶ X → Y as long as X and Y are Deligne–Mumford (see
Example A.8 for some milder assumptions that work).

2.2.2. Smooth contravariance. If f ∶ X → Y is a smooth morphism of relative
dimension d between derived Artin stacks locally of finite type over S, then
there are functorial Gysin homomorphisms

f ! ∶ HBM
s (Y/S,F(r)) → HBM

s+2d(X/S,F(r + d)).
These are compatible with proper direct images by a base change formula.
They are induced by the co-trace transformation id → f∗Σ−LX/Yf !, right
transpose of the purity equivalence ΣLX/Yf∗ = f ! (Theorem A.13).

2.2.3. Change of base. If f ∶ T → S is a morphism of derived Artin stacks
and X is a derived Artin stack locally of finite type over S, then there are
change of base homomorphisms

f∗ ∶ HBM
s (X/S,F(r)) → HBM

s (XT /T ,F(r)),
where XT = X ×R

S
T is the derived fibred product. More generally, for any

commutative square

Y T

X S
∆ f

which is cartesian on underlying classical stacks, there are homomorphisms

f∗∆ ∶ HBM
s (X/S,F(r)) → HBM

s (Y/T ,F(r)).
1This essentially amounts to admitting a theory of Chern classes. The constructions

also work for non-oriented spectra [DJK], but are more notationally complex due to the
necessity of grading by K-theory classes instead of just pairs of integers. We are only
interested in oriented examples here.
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These are induced by the unit map id→ f∗f
∗ and the base change formula

(Theorem A.5).

Remark 2.15. Note that f∗ always denotes contravariant functoriality in the
base (change of base homomorphisms, 2.2.3), while f ! denotes contravariant
functoriality in the source (Gysin homomorphisms, 2.2.2). Potentially the
notation also clashes with that of the six operations (Appendix A), but there
should be no risk of confusion.

2.2.4. Top Chern class. Let E be a finite locally free sheaf of rank r on a
derived Artin stack X over S. Then there is a top Chern class (Euler class)

cr(E) ∈ H2r(X ,F(r)).

This is induced by the Euler transformation id → ΣE (Construction A.16).
There is a general theory of Chern classes ci(E) (when F is oriented), as in
[De1, Sect. 2.1], but we will not need it here.

2.2.5. Composition product. Given a derived Artin stack T locally of finite
type over S and a derived Artin stack X locally of finite type over T , there
is a pairing

○ ∶ HBM
s (X/T ,F(r)) ⊗HBM

s′ (T /S,F(r′)) → HBM
s+s′(X/S,F(r + r′)).

This comes from the multiplication map m ∶ F ⊗ F → F , see [DJK, 2.2.7(4)]
for details.

Special cases of the composition product are cap and cup products:

2.2.6. Cap product. Given a derived Artin stack X locally of finite type over
S, there is a pairing

(2.16) ∩ ∶ Hs(X ,F(r)) ⊗HBM
s′ (X/S,F(r′)) → HBM

s′−s(X/S,F(r′ − r)).

2.2.7. Cup product. Given a derived Artin stack X over S, there is a pairing

(2.17) ∪ ∶ Hs(X ,F(r)) ⊗Hs′(X ,F(r′)) → Hs+s′(X ,F(r + r′)).

From now on, whenever we consider a Borel–Moore homology group
HBM
s (X/S,F(r)), we will implicitly assume that X is locally of finite type

over S (so that the exceptional inverse image functor f ! exists, see Sub-
sect. A.2).

2.3. Basic compatibilities. The operations on Borel–Moore homology are
subject to the following compatibilities, direct analogues of the axioms of a
bivariant theory in the sense of Fulton–MacPherson [FM, Sect. 2.2].
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2.3.1. Change of base and composition product. Suppose given a commutative
diagram

XT X

YT Y

T S

g

f

where the squares are cartesian. Then for classes α ∈ HBM
r (X/Y,F(s)),

β ∈ HBM
r′ (Y/S,F(s′)), we have

f∗(α ○ β) = g∗(α) ○ f∗(β)

in HBM
s+s′(XT /T ,F(r + r′)).

2.3.2. Change of base and direct image. Suppose given a commutative dia-
gram

XT X

YT Y

T S

h′ h

f

where the squares are cartesian. Then for any class α ∈ HBM
r (X/S,F(s)),

we have

f∗h∗(α) = h′∗f∗(α)

in HBM
s (YT /T ,F(r)).

2.3.3. Direct image and composition product (on the right). Suppose given a
commutative diagram

X Y

S T

f

with f representable and proper. Then for classes α ∈ HBM
s (X/S,F(r)),

β ∈ HBM
s′ (S/T ,F(r′)), we have

f∗(α) ○ β = f∗(α ○ β)

in HBM
s+s′(Y/T ,F(r + r′)).
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2.3.4. Direct image and composition product (on the left). Suppose given a
commutative diagram

X ′ Y ′

X Y

S

g

f

where the square is cartesian. Then for classes α ∈ HBM
s (X/S,F(r)) and

β ∈ HBM
s′ (Y ′/Y,F(r′)), we have

β ○ f∗(α) = g∗(f∗(β) ○ α)

in HBM
s+s′(Y ′/S,F(r + r′)).

2.4. Properties. The following two statements follow immediately from
Theorem A.9.

Theorem 2.18 (Localization). Let i ∶ Z → X be a closed immersion of
derived Artin stacks over S, with open complement j ∶ U → X . Then for
every integer r there is a long exact sequence

⋯ ∂Ð→ HBM
s+1(Z/S,F(r)) i∗Ð→ HBM

s+1(X/S,F(r)) j!Ð→ HBM
s+1(U/S,F(r))

∂Ð→ HBM
s (Z/S,F(r)) i∗Ð→ HBM

s (X/S,F(r)) j!Ð→ ⋯

Theorem 2.19 (Derived invariance). Let X be a derived Artin stack over
S.

(i) Let iS ∶ Scl → S denote the inclusion of the underlying classical stack.
Then the change of base homomorphisms

i∗
S
∶ HBM

s (X/S,F(r)) → HBM
s (X R×

S

Scl/Scl,F(r))

are bijective for all r, s ∈ Z.

(ii) Let iX ∶ Xcl → X denote the inclusion of the underlying classical stack.
Then the direct image homomorphisms

(iX )∗ ∶ HBM
s (Xcl/S,F(r)) → HBM

s (X/S,F(r))

are bijective for all r, s ∈ Z.

Proposition 2.20 (Homotopy invariance). Let X be a derived Artin stack
over S. For a perfect complex E on X of Tor-amplitude [−k, 1], where k ⩾ −1,
denote by π ∶ VX (E[−1]) → X the associated vector bundle stack. Then for
every r, s ∈ Z there is a canonical isomorphism

π! ∶ HBM
s (X/S,F(r)) → HBM

s−2d(VX (E[−1])/S,F(r − d)),

where d is the virtual rank of E.
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Proof. The map is induced by the natural transformation

f∗f
!(F) unitÐÐ→ f∗π∗π

∗f !(F)
purπÐÐ→ f∗π∗Σ−Lππ!f !(F) = f∗π∗Σπ∗(E)π!f !(F),

which is invertible by Props. A.10 and A.13. �

Definition 2.21. Let X be a derived Artin stack over S. If X is smooth of
relative dimension d, then there is a relative fundamental class

[X /S] ∈ HBM
2d (X/S,F(d))

defined as the image of the unit by the Gysin map f ! (2.2.2). More explicitly,
this class is induced by the morphism

1S → f∗Σ−LX/Sf !(F) = f∗f !(F)(−d)[−2d]

coming by adjunction from the purity isomorphism f ! = ΣLX/Sf∗ (Theo-
rem A.13), where f ∶ X → S is the structural morphism.

Remark 2.22. For X smooth over S as above, the fundamental class [X /S]
is “classical”, in the sense that it is insensitive to the derived structure. That
is, under the canonical isomorphism (Theorem 2.19)

HBM
2d (X/S,F(d)) ≃ HBM

2d (Xcl/Scl,F(d)),

the class [X /S] corresponds to [Xcl/Scl], the fundamental class of the mor-
phism Xcl → Scl. Note that this makes sense because the latter is again a
smooth morphism of relative dimension d. This is in contrast to the more
general case of quasi-smooth morphisms (Sect. 3).

Theorem 2.23 (Poincaré duality). Let X be a smooth derived Artin stack
over S. Then cap product (2.2.6) with the fundamental class [X /S] induces
a canonical isomorphism

Hs(X ,F(r)) ∩[X/S]ÐÐÐÐ→ HBM
2d−s(X/S,F(d − r))

for all r, s, ∈ Z.

Proof. Unraveling definitions, this follows from the fact that the morphism
1S → f∗f

!(F)(−d)[−2d] defining [X /S] is the “right transpose” of an iso-
morphism. See the discussion after [DJK, Def. 2.3.11]. �

3. Fundamental classes

We develop some basic tools of intersection theory, namely the specializa-
tion and Gysin maps, for Borel–Moore homology of derived Artin stacks. We
follow the constructions of Déglise–Jin–Khan [DJK] closely, the main differ-
ence being the introduction of the normal bundle stack to handle the cases
of quasi-smooth closed immersions and smooth morphisms simultaneously.
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3.1. Construction. Let S be a derived Artin stack and fix a coefficient
F as in Sect. 2. Let f ∶ X → Y be a quasi-smooth morphism of derived
Artin stacks over S, say of relative virtual dimension d. Denote by NX/Y the
normal bundle stack (Definition 1.1).

Construction 3.1 (Specialization map). We define a specialization map

(3.2) sp
X/Y

∶ HBM
s (Y/S,F(r)) → HBM

s (NX/Y/S,F(r))
for all r, s ∈ Z. First, the localization long exact sequence associated to the
closed immersion Y = Y × {0} → Y ×A1 splits into short exact sequences

0→ HBM
s+1(A1

Y
/S,F(r)) → HBM

s+1(Gm,Y/S,F(r)) ∂Ð→ HBM
s (Y/S,F(r)) → 0.

The homomorphism ∂ admits a canonical section

(3.3) γt ∶ HBM
s (Y/S,F(r)) → HBM

s+1(Gm,Y/S,F(r)),
see [DJK, 3.2.2] for details.

Let DX/Y be the deformation space (Subsect. 1.4). Let i ∶ NX/Y → DX/Y

denote the inclusion of the exceptional fibre and j ∶ Y × Gm → DX/Y its
complement. The associated localization long exact sequence has boundary
map

∂ ∶ HBM
s+1(Gm,Y/S,F(r)) → HBM

s (NX/Y/S,F(r)),
and we define (3.2) as the composite

HBM
s (Y/S,F(r)) γtÐ→ HBM

s+1(Gm,Y/S,F(r)) ∂Ð→ HBM
s (NX/Y/S,F(r)).

Construction 3.4 (Gysin map). We now construct the Gysin map

(3.5) f ! ∶ HBM
s (Y/S,F(r)) → HBM

s+2d(X/S,F(r + d)),
where f ∶ X → Y is as above. Let π ∶ NX/Y → X denote the projection. The
Gysin map (3.5) is the composite

HBM
s (Y/S,F(r))

spX/YÐÐÐ→ HBM
s (NX/Y/S,F(r)) (π!

)
−1

ÐÐÐ→ HBM
s+2d(X/S,F(r + d)).

where π! is the isomorphism of Proposition 2.20.

Construction 3.6 (Fundamental class). The (relative) fundamental class
of f ∶ X → Y is the class

[X /Y] ∶= f !(1) ∈ HBM
2d (X/Y,F(d))

which is the image of 1 ∈ HBM
0 (Y/Y,F). When f is smooth, this is the

fundamental class already defined (see before Theorem 2.23).

The (relative) virtual fundamental class is defined to be the unique class

[X /Y]vir ∈ HBM
2d (Xcl/Ycl,F(d))

corresponding to [X /Y] under the canonical isomorphisms of Theorem 2.19.

Remark 3.7. The Gysin map and fundamental class are essentially inter-
changeable data, as we can recover the former via the composition product
(2.2.5) with [X /Y]:

f !(x) = [X/Y] ○ x ∈ HBM
s+2d(X/S,F(r + d))

for all x ∈ HBM
s (Y/S,F(r)).
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Remark 3.8 (Purity transformation). In terms of the six operations, the
fundamental class can be interpreted as a canonical natural transformation

(3.9) purf ∶ ΣLX/Yf∗ → f !

of functors SHét(Y) → SHét(X), where ΣLX/Y is the operation defined in
(A.12). Through the orientation of F , this induces a canonical isomorphism

(3.10) f∗(F)(d)[2d] ≃ ΣLX/Yf∗(F) → f !(F).

See [DJK, Subsects. 2.5, 4.3] for details on this perspective.

Variant 3.11. Let’s restrict our attention to derived schemes or algebraic
spaces. As explained in Remark 2.14, there is a well-behaved theory of
Borel–Moore homology with coefficients in any F , not necessarily satisfying
étale descent (such as the integral motivic cohomology or algebraic cobordism
spectrum). Following the constructions of [DJK, §3], we can still define the
fundamental class [X/Y] ∈ HBM

2d (X/Y,F(d)) for smoothable quasi-smooth
morphisms f ∶ X→ Y (where d = vd(X/Y)).

First let i ∶ Z→ X be a quasi-smooth closed immersion (or quasi-smooth
unramified morphism [KR, §5.2]). In this case the normal bundle stack NZ/X

is a vector bundle (as opposed to a vector bundle stack), and Constructions 3.1
and 3.4 only involve derived algebraic spaces. Thus we get the fundamental
class [Z/X] ∈ HBM

2d (Z/X,F(d)), where d = vd(Z/X). These fundamental
classes also satisfy the properties asserted in the next section.

Now let f ∶ X → Y be a smoothable quasi-smooth morphism of derived
algebraic spaces, i.e., one that admits a global factorization

X
iÐ→M

pÐ→ Y

with p smooth and i a (quasi-smooth) closed immersion. Define the funda-
mental class [X/Y] ∈ HBM

2d (X/Y,F(d)), where d = vd(X/Y), by

[X/Y] = [X/M] ○ [M/Y].

Exactly as in [DJK, §3.3], one verifies that this is independent of the factor-
ization and that the resulting system of fundamental classes still satisfies the
properties stated in the next subsection.

3.2. Properties. We record the basic properties of the fundamental class.
These could equivalently be stated for the Gysin maps.

Theorem 3.12 (Functoriality). Let f ∶ X → Y and g ∶ Y → Z be quasi-
smooth morphisms of derived Artin stacks, of relative virtual dimensions d
and e, respectively. Then we have

[X /Y] ○ [Y/Z] = [X/Z]

in HBM
2d+2e(X/Z,F(d + e)).

Use the double deformation space as in [DJK, Prop. 3.2.19].
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Theorem 3.13 (Base change). Suppose given a cartesian square of derived
Artin stacks

(3.14)

X ′ Y ′

X Y

g

p q

f

over S, where f is quasi-smooth. Then there is an equality

p∗[X /Y] = [X ′/Y ′] ∈ HBM
2d (X ′/Y ′,F(d)),

where d is the relative virtual dimension of f (and hence of g).

This follows easily from the stability of the deformation space DX/Y under
base change (Theorem 1.3(ii)). More generally:

Proposition 3.15 (Excess intersection formula). Suppose given a commu-
tative square of derived Artin stacks

(3.16)

X ′ Y ′

X Y

g

p ∆ q

f

over S, where f and g are quasi-smooth. Assume that ∆ is an excess
intersection square, i.e., that it is cartesian on underlying classical stacks
and that the fibre E of the canonical map

p∗LX/Y[−1] → LX ′/Y ′[−1]

is a locally free OX-module of finite rank. Then there is an equality

q∗∆[X /Y] = cr(E) ∩ [X ′/Y ′] ∈ HBM
2d (X ′/Y ′,F(d)),

where q∗∆ denotes the change of base homomorphism (2.2.3), d = vd(X/Y),
and r = rk(E).

Same as the proof of [DJK, Prop. 3.2.8]. We call E the excess sheaf
associated to ∆. Note that its rank is r = vd(X ′/Y ′) − vd(X/Y).

Corollary 3.17 (Self-intersection formula). Let i ∶ X → Y be a quasi-
smooth closed immersion of relative virtual codimension n. Consider the
self-intersection square

X X

X Y.
∆ i

i

We have

i∗∆[X /Y] = cn(NX/Y) ∈ HBM
−2n(X/X ,F(−n)) = H2n(X ,F(n)),

where NX/Y = LX/Y[−1] is the conormal sheaf.
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Corollary 3.18 (Key formula). Let i ∶ X → Y be a quasi-smooth closed
immersion of relative virtual codimension n. Form the blow-up square [KR,
Thm. 4.1.5]:

D BlX/Y

X Y,

p ∆ q

i

where D = PX (NX/Y) is the virtual exceptional divisor. We have

q∗∆[X /Y] = cn−1(E) ∩ [D/BlX/Y] ∈ HBM
−2n(D/BlX/Y ,F(−n)),

where E is the excess sheaf.

3.3. Comparison with Behrend–Fantechi. Let f ∶ X → Y be a quasi-
smooth morphism of derived 1-Artin stacks. Assume that f is representable
by derived Deligne–Mumford stacks and Y is classical. In this case the virtual
fundamental class

[X /Y]vir ∈ HBM
2d (Xcl/Y,F(d))

can also be defined using the approach of Behrend–Fantechi [BF]. Below, we
give a variant of the construction of the Gysin map f ! (3.5) which will visibly
agree with the “virtual pullback” of Manolache [Ma]. By Corollary 3.12 of
op. cit., this will therefore identify our virtual fundamental class [X /Y]vir

with the construction of Behrend–Fantechi.

Let CXcl/Y
denote the relative intrinsic normal cone [BF, Sect. 7] of the

morphism Xcl → X → Y, and let DXcl/Y
denote Kresch’s deformation to the

intrinsic normal cone [Ma, Thm. 2.31]. There is a commutative diagram

CXcl/Y
DXcl/Y

Y ×Gm

NX/Y DX/Y Y ×Gm

a

where the vertical arrows are closed immersions. Using the upper row, one
constructs just as in (3.2) a specialization map

sp
Xcl/Y

∶ HBM
s (Y/S,F(r)) → HBM

s (CXcl/Y
/S,F(r)).

By naturality of the localization triangle with respect to proper covariance
(e.g. [DJK, Prop. 2.2.10]), we have an equality

a∗ ○ sp
Xcl/Y

= sp
X/Y

of morphisms HBM
s (Y/S,F(r)) → HBM

s (NX/Y/S,F(r)). In particular we get

f ! = (π!)−1 ○ sp
X/Y

= (π!)−1 ○ a∗ ○ sp
Xcl/Y

,

where π ∶ NX/Y → X is the projection. Now the right-hand side is precisely

the virtual pullback f !
NX/Y [Ma, Constr. 3.6] constructed with respect to the

vector bundle stack NX/Y .
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3.4. Non-transverse Bézout theorem. Let f ∶ Z → X be a morphism
of derived Artin stacks over S. Suppose that f is quasi-smooth of relative
virtual dimension d. The fundamental class [Z/X] induces a cohomological
Gysin map

(3.19) f! ∶ Hr(Z,F(s)) → Hr−2d
Z

(X ,F(s − d))

where the target is the cohomology of X with support in Z (2.4). This map
is the composite

HBM
−r (Z/Z,F(−s)) ○[Z/X]ÐÐÐÐ→ HBM

−r+2d(Z/X ,F(−s + d)).

Composing further with the Borel–Moore direct image (2.2.1)

f∗ ∶ HBM
−r+2d(Z/X ,F(−s + d)) → HBM

−r+2d(X/X ,F(−s + d)),

when it exists, gives rise to the Gysin map

(3.20) f! ∶ Hr(Z,F(s)) → Hr−2d(X ,F(s − d))

valued in the cohomology of X . For example, this exists when f is proper
and representable, or just proper if X is Deligne–Mumford and F = Q or
MGLQ.

In particular we have a cohomological fundamental class

(3.21) [Z] = f!(1) ∈ H−2d(X ,F(−d))

under these assumptions. For simplicity we’ll state Theorem 3.22 below only
for the representable case, but the proof only requires the existence of proper
direct images.

The following is a generalized cohomological Bézout theorem, where no
transversity assumptions are imposed.

Theorem 3.22. Let X be derived Artin stack over S, and let f ∶ Y → X and
g ∶ Z → X be representable proper quasi-smooth morphisms of relative virtual
dimension −d and −e, respectively. Then we have

[Y] ⋅ [Z] = [Y R×
X

Z] ∈ H2d+2e(X ,F(d + e)).

Proof. Consider the homotopy cartesian square

W Z

Y X

p

q h g

f

where W = Y ×R
X
Z. Under the identification

H2d+2e(X ,F(d + e)) = HBM
−2d−2e(X/X ,F(−d − e)),
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the desired equality is

h∗[W/X] = g∗p∗([W/Z] ○ [Z/X])
= g∗p∗(g∗[Y/X] ○ [Z/X])
= g∗(p∗g∗[Y/X] ○ [Z/X])
= g∗(g∗f∗[Y/X] ○ [Z/X])
= f∗[Y/X] ○ g∗[Z/X].

The first and second equalities follow from the functoriality and base change
properties of the fundamental class (Theorems 3.12 and 3.13). For the rest
we use the formulas (2.3.3), (2.3.2), and (2.3.4), in that order. �

The variant for schemes stated in the introduction (0.2) is obtained by
applying this to the integral motivic cohomology spectrum F = Z and using
the fundamental classes of Variant 3.11.

3.5. Grothendieck–Riemann–Roch. Let F and G be two (multiplicative)
coefficients over S and φ ∶ F → G a ring morphism. The morphism φ induces
a homomorphism

φ∗ ∶ Hs(X ,F(r)) → Hs(X ,G(r))
for every X over S. Given a quasi-smooth morphism of derived Artin
stacks f ∶ X → Y, let [X /Y]F and [X /Y]G denote the fundamental classes
formed with respect to F and G, respectively. The following Grothendieck–
Riemann–Roch formula compares these two classes in terms of a certain class

Tdφ
X/Y

∈ H0(X ,G).
Theorem 3.23. Let f ∶ X → Y be a quasi-smooth morphism of derived Artin
stacks over S. Then we have

(3.24) φ∗([X/Y]F) = Tdφ
X/Y

∩[X/Y]G

in HBM
2d (X/Y,G(d)), where d = vd(X/Y) and where ∩ denotes the cap product

(2.2.6).

These immediately gives the usual formulas in Borel–Moore homology and
cohomology:

Corollary 3.25. Let f ∶ X → Y be a quasi-smooth morphism of derived
Artin stacks over S. Then the square

HBM
s (Y/S,F(r)) HBM

s+2d(X/S,F(r + d))

HBM
s (Y/S,G(r)) HBM

s+2d(X/S,G(r + d))

f !

φ∗ φ∗
TdφX/Y ∩f

!

commutes. If f is moreover proper, then the square

Hs(X ,F(r)) Hs−2d(Y,F(r − d))

Hs(X ,G(r)) Hs−2d(Y,G(r − d))

f!

φ∗ φ∗
f!(TdφX/Y ∪−)
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also commutes.

Let E be a perfect complex of Tor-amplitude [−k, 1], k ⩾ −1, on X of virtual
rank d. We define the Todd class tdφ(E). Since capping with the Thom class

thG
X
(−E) defines an isomorphism H0(X ,G) → H2d

X
(VX (E[−1]),G(d)), there

exists a unique class

tdφ(E) ∈ H0(X ,G)×

such that the relation

(3.26) φ∗(thFX (−E)) = tdφ(E) ∩ thG
X
(−E)

holds in H2d
X
(VX (E[−1]),G(d)). Exactly as in [De1, Subsect. 5.2], this Todd

class can be described explicitly using the formalism of formal group laws.

We set Tdφ
X/Y

= tdφ(LX/Y) for f ∶ X → Y quasi-smooth.

By deformation to the normal bundle stack (Subsect. 1.4), the formula
(3.24) reduces to the case where f is the zero section of a vector bundle
stack Y = VX (E[−1]), where E is a perfect complex of Tor-amplitude [−k, 1],
k ⩾ −1. In this case the fundamental class [X /Y]F is nothing else than the

Thom class thF
X
(E), and similarly for G, so the formula reduces to (3.26).

Theorem 3.23 is proven.

Let’s make this formula slightly more explicit when φ is the total Chern
character. This is a morphism of motivic ring spectra

ch ∶ KGL→⊕
i∈Z

Q(i)[2i]

in SH(Spec(Z)), which induces an isomorphism KGLQ ≃ ⊕i∈Z Q(i)[2i] upon
rationalization [Ri], [De1, 5.3.3]. Since Q satisfies étale descent, ch factors

through the étale localization KGLét. For any derived Artin stack S, we
obtain by inverse image along the structural morphism a canonical Chern
character

ch ∶ KGLét
S
→⊕

i∈Z

QS(i)[2i]

in SHét(S), which induces an isomorphism KGLét
Q,S ≃ ⊕i∈Z QS(i)[2i]. The

source and target admit canonical orientations such that the Todd class
TdX/Y is the classical Todd class [De1, 5.3.3]. Suppose that S is the spec-

trum of a field k, so that the Borel–Moore homology represented by KGLét
S

coincides with étale hypercohomology with coefficients in G-theory, and the
proper covariance and Gysin maps are compatible with the respective intrinsic
operations in G-theory (Example 2.13). The Borel–Moore homology repre-
sented by QS coincides with the rational (higher) Chow groups. Under these
identifications the Chern character ch induces canonical homomorphisms
which we denote

τX ∶ H0
ét(X ,G) → A∗(X)Q.

We also write τX for the composite with the canonical morphism G(X) →
H0

ét(X ,G). Corollary 3.25 now yields the formula

τX (OX) = TdX ∩[X]
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in Ad(X)Q, or equivalently

(3.27) [X ] = Td−1
X
∩τX (OX ),

where we write simply [X ] for [X /Spec(k)] and similarly for the Todd class.
This is an extension of Kontsevich’s original conjectural formula for the
virtual fundamental class [X ]vir [Ko, 1.4.2] to Artin stacks.

3.6. Absolute purity. In this subsection we extend Gabber’s proof of the
absolute cohomological purity conjecture [SGA5, Exp. I, 3.1.4] to Artin
stacks.

Theorem 3.28 (Absolute purity). Let f ∶ X → Y be a locally of finite type
representable morphism between regular2 Artin stacks over Z[ 1

n], for some

integer n ∈ Z. Let Λ = Z/nZ and denote by Λét the Λ-linear étale motivic
cohomology spectrum (Example 2.11). Then the purity transformation purf
(3.10) induces a canonical isomorphism

(3.29) Λét
X
(d)[2d] → f !(Λét

Y
)

of étale motivic spectra over X .

It follows from the rigidity theorem of Cisinski–Déglise [CD2, Thm. 4.5.2]
that with finite coefficients, étale motivic cohomology agrees with usual étale
cohomology, so this does recover the classical statement when we restrict
to schemes. Actually, even in the case of schemes this statement is new,
since Gabber’s statement [ILO, Exp. XVI, Cor. 3.1.2] requires the schemes
to admit ample line bundles.

The new ingredient we use here is the purity transformation (Remark 3.8)
which generalizes Gabber’s construction of Gysin maps [ILO, Exp. XVI,
2.3]. Neither the statement nor the proof of Theorem 3.28 uses any derived
geometry, but it is worth recalling that our construction of purf involves the
normal bundle stack NX/Y , which is a classical 2-Artin stack even when X
and Y are classical 1-Artin stacks.

Proof of Theorem 3.28. Let v ∶ Y → Y be a smooth surjection with Y
schematic, and form the homotopy cartesian square

X Y

X Y.

f0

u v

f

The upper arrow f0 is a locally of finite type morphism and X (resp. Y) is a
regular algebraic space (resp. regular scheme). In terms of the purity trans-
formation, the base change property of the fundamental class (Theorem 3.13)

2Recall that an Artin stack S is regular if and only if, for every smooth morphism S→ S
with S a scheme, S is regular.
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translates to the commutativity of the diagram (cf. [DJK, Prop. 2.5.4(ii)])

u∗f∗(Λét
Y
)(d)[2d] u∗f !(Λét

Y
)

f∗0 v
∗(Λét

Y
)(d)[2d] f !

0v
∗(Λét

Y
).

purf

Ex∗!

purf0

The right-hand vertical arrow is the isomorphism induced by the exchange
transformation Ex∗! (Corollary A.15). Therefore, it will suffice to replace f
by f0 and thereby assume that Y = Y is a regular scheme and X = X is a
regular algebraic space.

We can find an étale surjection p ∶ U → X such that U is a (regular)
scheme and f ○ p ∶ U → Y is smoothable. The functoriality property of the
fundamental class (Theorem 3.12) translates to the commutativity of the
diagram (cf. [DJK, Prop. 2.5.4(i)])

p∗f∗(Λét
Y)(d)[2d] p∗f !(Λét

Y) p!f !(Λét
Y)

(f ○ p)∗(Λét
Y)(d)[2d] (f ○ p)!(Λét

Y).

purf purp

purf○p

Since p is étale, the upper right-hand arrow purp is invertible (Theorem A.13).
Therefore, replacing X by U and f by f ○ p ∶ U → Y, we may assume that
f ∶ X→ Y is a smoothable morphism between regular schemes.

Choose a factorization of f through a closed immersion i ∶ X → X′ and
a smooth morphism g ∶ X′ → Y. Since purg is invertible by Theorem A.13,
applying the functoriality property again shows that we may replace f by i
and thereby assume that f = i is a closed immersion between regular schemes.

The assertion is that puri induces an isomorphism

Λét
X(d)[2d] → i!(Λét

Y),
or equivalently isomorphisms in étale motivic cohomology

(3.30) H2k−2c(X,Λét(k − c)) → H2k
X (Y,Λét(k))

for all integers k ∈ Z, where c = −d is the codimension of i. In this situation
the purity transformation puri is the same as the one constructed in [DJK,
4.3.1], and by [DJK, 4.4.3] it agrees with the construction of [De2, 2.4.6]
when applied to the étale motivic cohomology spectrum. The latter agrees,
through the ridigity equivalence [CD2, Thm. 4.5.2] identifying the étale
motivic cohomology groups in (3.30) with classical étale cohomology, with
Gabber’s construction in [ILO, Exp. XVI, 2.3] by design. Thus the claim
follows from [ILO, Exp. XVI, Thm. 3.1.1]. �

Remark 3.31. The argument applies more generally to show that for an
étale motivic spectrum F , absolute purity holds for locally of finite type rep-
resentable morphisms of regular Artin stacks (the analogue of Theorem 3.28)
if and only if it holds for closed immersions between regular schemes. For
example, this also applies to h-motivic cohomology [CD2, Thm. 5.6.2].
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Appendix A. The six operations for derived Artin stacks

In this appendix we extend the six operations to derived Artin stacks.
The category of coefficients we use is SHét, the étale-local motivic homotopy
category, but the construction works for any motivic ∞-category of coefficients
in the sense of [Kh1, Chap. 2] that satisfies étale descent. The notion
of “motivic ∞-category of coefficients” is a refinement of that of “motivic
triangulated category” studied in [CD1], but every example of the latter that
arises in practice can in fact be promoted to a motivic ∞-category. The
(∞, 1)-categorical refinement is crucial for the construction below. See [To2,
Sect. 2] for a quick introduction to the theory of ∞-categories.

The six operations in the (Nisnevich-local) motivic homotopy category SH
were already constructed by Ayoub and Voevodsky for schemes. They were
extended to derived schemes by Khan [Kh1]. Below we begin by recording
the extension from derived schemes to derived algebraic spaces; this is
straightforward and will not come as a surprise to certain readers. It is for
the further extension to derived Artin stacks that we pass to the étale-local
category, so that we can extend the operations essentially “by descent”.

A.1. Derived algebraic spaces.

Theorem A.1. The formalism of six operations on SH extends to derived
algebraic spaces. In particular:

(i) For every derived algebraic space X, there is a closed symmetric monoidal
structure on SH(X). In particular, there are adjoint bifunctors (⊗,Hom).

(ii) For any morphism of derived algebraic spaces f ∶ X→ Y, there is an adjunc-
tion

f∗ ∶ SH(Y) → SH(X), f∗ ∶ SH(X) → SH(Y).
The assignments f ↦ f∗, f ↦ f∗ are 2-functorial. The functor f∗ is symmet-
ric monoidal.

(iii) For any locally of finite type morphism of derived algebraic spaces f ∶ X→ Y,
there is an adjunction

f! ∶ SH(X) → SH(Y), f ! ∶ SH(Y) → SH(X).
The assignments, f ↦ f!, f ↦ f ! are 2-functorial.

(iv) The operation f! satisfies the base change and projection formulas against
f∗. That is, for any cartesian3 square

X′ Y′

X Y

f ′

p q

f

there are identifications

q∗f! = (f ′)!p
∗

and

f!(F) ⊗ G = f!(F ⊗ f∗(G))
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naturally in F and G. There is a natural transformation αf ∶ f! → f∗,
functorial in f , which is invertible if f is proper.

(v) Let i ∶ X → Y be a closed immersion of derived algebraic spaces, with open
complement j. Then the operation i∗ = i! induces a fully faithful functor

i∗ ∶ SH(X) → SH(Y)
whose essential image is the kernel of j∗. In particular, if i induces an
isomorphism on underlying reduced classical stacks, then i∗ is an equivalence.

(vi) Let X be a derived algebraic space and E a locally free sheaf on X. If p ∶
VX(E) → X denotes the associated vector bundle, then the unit transformation

id→ p∗p
∗

is invertible.

(vii) There is a canonical map of presheaves of E∞-group spaces on the site of
derived algebraic spaces,

(A.2) K(−) → Aut(SH(−)),
from the algebraic K-theory of perfect complexes to the ∞-groupoid of auto-
equivalences of SH. For a perfect complex E on a derived algebraic space X,
we let ΣE denote the induced auto-equivalence of SH(X), and Σ−E = ΣE

∨
its

inverse. If E is locally free, then we have

ΣE = s∗p!, Σ−E = s!p∗,

where p ∶ VX(E) → X is the projection of the associated vector bundle and
s ∶ X→VX(E) the zero section.

(viii) Let f ∶ X→ Y be a smooth morphism between derived algebraic spaces. Then
there is a purity equivalence

purf ∶ ΣLX/Yf∗ = f !

which is natural in f .

This was proven in [Kh1] for derived schemes so I only describe the mod-
ifications that need to be made for derived algebraic spaces. The idea is
that derived algebraic spaces are Nisnevich-locally affine (see e.g. the proof
of [Kh2, Prop. 2.2.13]), which is good enough since SH satisfies Nisnevich
descent. Thus in Chap. 0, one needs to replace “Zariski” by “Nisnevich”
in Propositions 5.3.5 and 5.6.2 (the proofs don’t change). In the proof of
Proposition 6.3.4, one needs to replace the reference to [Con07] by [CLO],
where Nagata compactifications are constructed for classical algebraic spaces.
The only modification necessary in Chap. 1 is that the proof of Proposi-
tion 2.2.9 needs to be replaced by the proof of [Kh2, Prop. 2.2.13]. This
extends the proof of the localization theorem [Kh1, Chap. 1, Thm. 7.4.3] to
derived algebraic spaces. Chap. 2 then goes through mutatis mutandis to
give the six operations on derived algebraic spaces.

3In fact, item (v) below implies that it suffices to assume that the square is cartesian
on underlying classical schemes.
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Only item (vii) requires further explanation, as the map (A.2) encodes
much more coherence of the assignment E ↦ ΣE than was constructed in
[Kh1]. On the site of classical schemes, such a map is constructed in [BH,
Subsect. 16.2]. It factors through homotopy invariant K-theory KH [BH,
Rem. 16.11]. By right Kan extension, the map KH → Aut(SH) extends
uniquely to the site of classical algebraic spaces. By derived nil-invariance of
KH and SH, see [Kh3, Subsect. 5.4] and [Kh1, Thm. 7.4.3] respectively, we
obtain a unique extension of this map to the site of derived algebraic spaces,
and we define (A.2) to be the composite K→ KH→ Aut(SH).

Strictly speaking, this only gives the operation f ! for separated morphisms
of finite type. Using Zariski descent and the homotopy coherence of the
six functor formalism, one extends this to locally of finite type morphisms.
Indeed, the coherence of the data in (iii) and (iv) can be encoded using
the formalism of Gaitsgory–Rozenblyum [GR, Part III] (as done in [Kh1,
Chap. 2, Thm. 5.1.2]) or that of Liu–Zheng [LZ] (as done in [Ro, Sect. 9.4]);
the two formalisms are almost equivalent, as explained in [GR, Part III, 1.3].
Then an easy application of the “DESCENT” program [LZ, Thm. 4.1.8]
gives the desired extension.

A.2. Derived algebraic stacks. We begin with the presheaf of ∞-categories

X↦ SH(X), f ↦ f∗

on the site of derived algebraic spaces. This is a Nisnevich sheaf, and as such
is right Kan-extended from the site of derived schemes or even affine derived
schemes.

Now let SHét denote its étale localization. In other words, we force SHét

to satisfy descent for Čech covers in the étale topology. We then take its
right Kan extension to the site of derived Artin stacks. This is thus the
unique extension of SHét to an étale sheaf on derived Artin stacks.

We can be more explicit. If X is a derived Artin stack and p ∶ X → X is
a smooth surjection with X a derived algebraic space, then p is a covering
in the étale topology so the ∞-category SHét(X) fits into a homotopy limit
diagram of ∞-categories

(A.3) SHét(X) p∗Ð→ SHét(X) ⇉ SHét(X
R×
X

X) →→→ SHét(X
R×
X

X
R×
X

X) →→→→ ⋯.

More canonically, SHét(X) is identified with the homotopy limit

(A.4) SHét(X) = lim←ÐSHét(X)
taken over the ∞-category LisX of all smooth morphisms u ∶ X → X with
X schematic. Roughly speaking, objects F ∈ SHét(X) may be viewed as
collections (u∗F)u, indexed over (u ∶ X → X) ∈ LisX , compatible up to
coherent homotopies. In particular, the family of functors u∗ is conservative
as u varies in LisX .

Theorem A.5.

(i) For every derived Artin stack X , there is a closed symmetric monoidal
structure on SH(X). In particular, there are adjoint bifunctors (⊗,Hom).
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(ii) For any morphism of derived Artin stacks f ∶ X → Y, there is an adjunction

f∗ ∶ SHét(Y) → SHét(X), f∗ ∶ SHét(X) → SHét(Y).

The assignments f ↦ f∗, f ↦ f∗ are 2-functorial.

(iii) For any locally of finite type morphism of derived Artin stacks f ∶ X → Y,
there is an adjunction

f! ∶ SHét(X) → SHét(Y), f ! ∶ SHét(Y) → SHét(X).

The assignments f ↦ f!, f ↦ f ! are 2-functorial.

(iv) The operation f! satisfies the base change4 and projection formulas against
g∗, and f ! satisfies base change against g∗. If f is representable by derived
Deligne–Mumford stacks, then there is a natural transformation αf ∶ f! → f∗,
functorial in F . If f is 0-representable and proper, then αf is invertible.

On the site of derived algebraic spaces, we may view SHét as a presheaf
valued in the ∞-category of presentably symmetric monoidal ∞-categories
and symmetric monoidal left-adjoint functors. Since the forgetful functor
to (large) ∞-categories preserves limits [HTT, Prop. 5.5.3.13], the right
Kan extension can be performed either way without changing the underlying
presheaf of ∞-categories. In particular, we find that SHét(X) is a presentably
symmetric monoidal ∞-category for every derived Artin stack X and that
f∗ is a symmetric monoidal left-adjoint functor for every morphism f . We
let ⊗ denote the monoidal product, Hom the internal hom, and f∗ the right
adjoint of f∗.

Similarly, if we restrict the presheaf SHét to smooth morphisms between
derived algebraic spaces, then it takes values in presentable ∞-categories
and right adjoint functors (as follows from Theorem A.1(viii)). By [HTT,
Thm. 5.5.3.18] its right Kan extension to derived Artin stacks will have the
same property; that is, f∗ admits a left adjoint f♯ for every smooth morphism
f of derived Artin stacks.

Let SH!
ét denote the étale sheaf on the site of derived algebraic spaces, and

locally of finite type morphisms, given by

X↦ SHét(X), f ↦ f !

and take its right Kan extension to derived Artin stacks. For every X there
is then a canonical equivalence

ΘX ∶ SHét(X) → SH!
ét(X)

determined by the property that

u!(ΘX (F)) = ΣLX/Xu∗(F)

for all u ∶ X → X in LisX . For any morphism f ∶ X → Y, we define
f ! ∶ SHét(Y) → SHét(X) by f ! = Θ−1

X
○ f ! ○ ΘY . More concretely, f ! is

4From Theorem A.9 below it follows that the base change formula applies also to squares
that are only cartesian on underlying classical stacks.
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determined by the fact that for any commutative square

X Y

X Y

f0

u v

f

with u and v smooth and f0 a morphism of derived algebraic spaces, we have

u∗f !(F) = Σf∗0 (LY/Y)−LX/X f !
0(v∗F)

for all F ∈ SHét(Y), or equivalently

(A.6) ΣLX/Xu∗f !(F) = f !
0ΣLY/Yv∗(F).

Moreover, these identifications are subject to a homotopy coherent system
of compatibilities as f varies.

On SH!
ét, the operation f ! automatically admits a left adjoint f! for every

morphism f . Indeed, the right Kan extension can be computed in the
∞-category of presentable ∞-categories and right adjoint functors (as the
forgetful functor preserves limits [HTT, Thm. 5.5.3.18]). This induces an
operation f! ∶ SHét(X) → SHét(Y) by f! = Θ−1

Y
○ f! ○ΘX , so that

f!u♯Σ
−LX/X = v♯Σ−LY/Y (f0)!

for all commutative squares as above.

As mentioned in Subsect. A.1, all the data in Theorem A.5 can be encoded
using the formalism of either Gaitsgory–Rozenblyum [GR, Part III] or Liu–
Zheng [LZ]. In the former case, one may apply [GR, Chap. 8, Thm. 6.1.5] (cf.
[GR, Chap. 5, Thm. 3.4.3], [RS, Sect. 2.2]) to glue together the required data
from its restriction to algebraic spaces (already constructed in Theorem A.1),
via an (∞,2)-categorical right Kan extension. Alternatively, we apply the
“DESCENT” program of [LZ, Thm. 4.1.8], just as in [LZ, Subsect. 5.4].

Under certain assumptions the identification f! = f∗ can be extended to
non-representable proper morphisms:

Theorem A.7. Let f ∶ X → Y be a morphism of derived Artin stacks that is
representable by derived Deligne–Mumford stacks. Assume that there exists
a finite surjection g ∶ Z → X with Z an algebraic space. For F ∈ SHét(X),
consider the morphism

αf ∶ f!(F) → f∗(F)
induced by the natural transformation αf (Theorem A.5(iv)). If f is proper
and F satisfies descent for finite surjections, then this morphism is invert-
ible. In particular, this applies to the rational motivic cohomology spectrum
QX (Example 2.10), the rational algebraic cobordism spectrum MGLQ,X

(Example 2.12), or more generally any MGLQ,X -module.

Proof. Since F satisfies descent along the Čech nerve of g ∶ Z → X , it will
suffice to show that

αf ∶ f!(h∗h∗F) → f∗(h∗h∗F)
is invertible for every finite surjection h ∶ W → X with W an algebraic space.
Since h and f ○ h are 0-representable and proper, αh and αf○h are invertible
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by Theorem A.5(iv). Therefore the claim follows from the functoriality of αf
in f . It applies to QX because the latter satisfies descent for the h topology
[CD2, Cor. 5.5.5]. �

Example A.8. Note that X admits a finite cover by an algebraic space if
and only if the classical stack Xcl does. This is the case for example if Xcl

has quasi-finite separated diagonal [Ry, Thm. B], or if Xcl has quasi-finite
diagonal and is of finite type over a noetherian scheme [EHKV, Thm. 2.7].
In particular this holds if Xcl is a Deligne–Mumford stack.

Theorem A.9 (Localization). Let i ∶ X → Y be a closed immersion of
derived Artin stacks, with open complement j. Then the operation i∗ = i!
induces a fully faithful functor

i∗ ∶ SHét(X) → SHét(Y)

whose essential image is the kernel of j∗. In particular, if i induces an
isomorphism on underlying reduced classical stacks, then i∗ is an equivalence.

Proof. For fully faithfulness it suffices to show that the co-unit i∗i∗ → id
is invertible. After base change along a smooth atlas v ∶ Y → Y with Y
schematic, we get a closed immersion i0 ∶ X → Y and an induced atlas
u ∶ X→ X . It suffices to show the co-unit becomes invertible after applying
u∗ on the left, in which case it is identified with i∗0(i0)∗u∗(F) → u∗(F),
by the base change formula (Theorem A.5(iv)). This is invertible by the
localization theorem for derived schemes ([Kh1, Chap. 1, Cor. 7.4.9]).

Since X ×Y(Y ∖X) is empty, the base change formula shows that j∗i∗ = 0.
It remains to show that if F ∈ SHét(Y) satisfies j∗(F) = 0, then the unit
map F → i∗i

∗(F) is invertible. By descent we reduce again to the schematic
case which is [Kh1, Chap. 1, Cor. 7.4.7]. �

Thanks to David Rydh for the idea of the inductive argument in the proof
below.

Proposition A.10 (Homotopy invariance). Let X be a derived Artin stack
and E a perfect complex on X of Tor-amplitude [−k,1], for k ⩾ −1. If
π ∶ VX (E[−1]) → X denotes the associated vector bundle stack, then the unit
transformation

id→ π∗π
∗

is invertible.

Proof. First assume that E is of Tor-amplitude [1,1], so that π is a vector
bundle. By descent we may assume that X is schematic, in which case the
claim holds almost by construction (see [Kh1, Chap. 2, Subsect. 3.2]).

If E is of Tor-amplitude [0,0], then π is the projection of the classifying
stack of the vector bundle VX (E) → X , and the canonical section σ ∶ X →
VX (E[−1]) is a smooth surjection. The composite of the two unit maps
id → π∗π

∗ → π∗σ∗σ
∗π∗ = id is the identity, so will suffice to show that

the unit id → σ∗σ
∗ is invertible. Since σ is a smooth surjection it suffices
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moreover to show that σ! → σ!σ∗σ
∗ is invertible. By the base change formula

for the square

VX (E) X

X VX (E[−1]),

p

p σ

σ

we reduce to showing that the unit map id→ p∗p
∗ is invertible. This holds

by the Tor-amplitude [1,1] case already proven above. Repeating the same
argument inductively shows the case of Tor-amplitude [−k,−k] for all k ⩾ 0.

For the general case of Tor-amplitude [−k,1], we argue by induction on
k to reduce to the k = −1 case above. The question being local on X , we
may find a surjection E0[−k] → E with E0 locally free. If E ′ is the fibre of
this map, then E ′[1] is then of Tor-amplitude [−(k − 1),1], so by indutive
assumption we know that the claim holds for π′ ∶ VX (E ′) → X (i.e., that
id→ (π′)∗(π′)∗ is invertible). There is a commutative diagram

X VX (E ′) X

VX (E[−1]) VX (E0[−k − 1])

X ,

σ′

σ

π′

τ σ0

ρ

π
π0

where the square is cartesian. As E0[−k−1] is of Tor-amplitude [−k−1,−k−1],
we already know that the unit id → (π0)∗(π0)∗ is invertible by above. It
remains to show that id→ ρ∗ρ

∗ is invertible, which can be done after applying
σ!

0 on the left. By the base change formula this follows from invertibility of
the unit id→ (π′)∗(π′)∗. �

The canonical map (A.2) of Theorem A.1(vii) also extends to the site of
derived Artin stacks:

(A.11) K(−) → Aut(SHét(−)).
Indeed as the target satisfies étale descent, the map factors through étale
K-theory Két and arises via right Kan extension from derived algebraic spaces.
We thus also have the (invertible) operations

(A.12) ΣE ∶ SH(X) → SH(X)
for E ∈ Perf(X).

Theorem A.13 (Purity). Let f ∶ X → Y be a smooth morphism of derived
Artin stacks. Then there is a purity equivalence

purf ∶ ΣLX/Yf∗ = f !

which is natural in f .

Proof. This follows immediately from the characterization of f ! given in the
proof of Theorem A.5. �
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Example A.14. Let E be a perfect complex of Tor-amplitude [−k, 1], k ⩾ −1,
on a derived Artin stack X . Then VX (E[−1]) is a smooth Artin stack over
X . Let π ∶ VX (E[−1]) → X denote the projection and σ ∶ X → VX (E[−1])
the canonical section. By purity (Theorem A.13) one has the formulas

ΣE = σ!π∗, Σ−E = σ∗π!.

Similarly if E is of Tor-amplitude [0,0] (= locally free), then

ΣE = s∗p!, ΣE[1] = s!p∗,

where p ∶ VX (E) → X and s ∶ X → VX (E) denote the projection and zero
section, respectively.

Corollary A.15. Suppose given a commutative square

X ′ Y ′

X Y

f ′

p q

f

of derived Artin stacks which is cartesian on underlying classical stacks. If f
is representable and locally of finite type, there is a natural transformation

Ex∗! ∶ p∗f ! → (f ′)!q∗.

If either f or q is smooth, then Ex∗! is invertible.

Proof. The natural transformation is defined as the composite

p∗f ! unitÐÐ→ p∗f !q∗q
∗ ≃ p∗p∗(f ′)!q∗

counitÐÐÐ→ (f ′)!q∗

where the isomorphism in the middle is the base change formula, obtained by
passage to right adjoints from the base change formula (Theorem A.5(iv)).
The second statement follows from Theorem A.13. �

Construction A.16 (Euler transformation). Let E be a locally free sheaf
on a derived Artin stack X . There is a natural transformation

(A.17) eulE ∶ id→ ΣE

of auto-equivalences of SHét(X). More generally for any surjection φ ∶ E → E ′
of finite locally free sheaves, there is a natural transformation

Σφ ∶ ΣE → ΣE
′

constructed as follows. Consider the commutative triangle

VX (E ′) VX (E)

X

i

q p

and let t and s be the respective zero sections. Then Σφ is the composite

t∗q! = t∗i!p! Ex∗!

ÐÐ→ t∗i∗p! = s∗p!

under the identifications s∗p! = ΣE and t∗q! = ΣE
′

(Example A.14), where

Ex∗! ∶ i! → i∗ is the exchange transformation (Corollary A.15) for the self-
intersection square of the closed immersion i.
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