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Abstract. In this paper we consider three types of localization theorems
for algebraic stacks:
(i) Concentration, or cohomological localization. Given an algebraic

group acting on a scheme or stack, we give a sufficient criterion for
its localized equivariant Borel–Moore homology to be concentrated
in a given closed substack. We deduce this from a new kind of
stacky concentration theorem.

(ii) Atiyah–Bott localization, or localization of (virtual) fundamental
classes to fixed loci of torus actions. In particular, this gives
a conceptual new proof of the Graber–Pandharipande formula
without global embedding or global resolution hypotheses.

(iii) Cosection localization, or localization of virtual fundamental classes
to degeneracy loci of cosections (of the “obstruction sheaf”). We
recast this in terms of a notion of “cohomological reductions” of
(−1)-shifted 1-forms on derived stacks.

These results also apply to oriented Borel–Moore homology theories,
such as (higher) Chow homology and algebraic bordism, and hold over
arbitrary fields and even in mixed characteristic. In an appendix, we
study various types of fixed loci for algebraic group actions on algebraic
stacks.
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Introduction

Localization techniques are indispensable in moduli theory. For many modern
applications, it is important to consider moduli problems as algebraic stacks.
In this paper we extend three types of localization theorems to the setting of
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algebraic stacks. This builds on the recent developments of new formalisms
for cohomology and intersection theory on stacks, based on advances in
homotopical methods and derived algebraic geometry.

0.1. Concentration, a.k.a. cohomological localization. The first ver-
sion of localization we consider is localization in the sense of Borel [Bor1].
Following Thomason [Tho3], we call this “concentration”. To formulate it, let
T be a split torus over a field k and consider the T -equivariant cohomology
ring

H∗
(BT ) = H∗

T (Speck) ∶= ⊕
m,n∈Z

Hn
T (Speck)(m).

For an Artin stack X locally of finite type over k we have the equivariant
Borel–Moore homology

HBM,T
∗ (X) ∶= ⊕

m,n∈Z
HBM,T
n (X)(m) (0.1)

where (m) denotes the Tate twist. Let H∗(BT )loc denote the localization
at the set of first Chern classes of all nontrivial characters of T , and for the
H∗(BT )-module HBM,T (X) write

HBM,T
(X)loc ∶= HBM,T

(X) ⊗H∗(BT )H
∗
(BT )loc.

Theorem A (Torus concentration). Let X be an Artin stack of finite type
over k with T -action. Let Z ⊆X be a T -invariant closed substack away from
which every point has T -stabilizer properly contained in T . Then

i∗ ∶ HBM,T
∗ (Z)loc → HBM,T

∗ (X)loc (0.2)

is an isomorphism.

See Theorem 3.1. Informally speaking, the condition on Z means that it
contains every T -fixed point. The notion of G-stabilizers, for an action of
group scheme G, is developed in Appendix A (see also Subsect. 0.4 of the
introduction below).

Remark 0.3. Borel–Moore homology, i.e., cohomology of the dualizing
complex, can be formed with respect to any reasonable six functor formalism,
such as Betti or étale sheaves; see [LZ1] for extensions to stacks. We will also
work with motivic six functor formalisms, such as Voevodsky’s triangulated
categories of motives; these also extend to stacks by [Kha2, Kha5], and for
quotient stacks the corresponding Borel–Moore homology theories recover
equivariant Chow groups (see [Kha6]). For example, for the T -equivariant
higher Chow groups of Edidin–Graham [EG1] we have the isomorphism

i∗ ∶ CHT
∗ ([Z/G],∗)loc → CHT

∗ ([X/G],∗)loc

where G is a linear algebraic group and X is a k-scheme with G × T -action
such that the T -stabilizers of points x ∈X ∖Z are properly contained in T .
Similarly, using MGL-modules as the sheaf theory we get the same result for
T -equivariant higher algebraic cobordism of [Kha6].
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We may reformulate torus-equivariant concentration (Theorem A) in terms
of the induced morphism of quotient stacks [Z/T ] → [X/T ]. The following
more general form of concentration applies to arbitrary stacks that need not
arise from a torus action, or from any group action at all.

Theorem B (Stacky concentration). Let X be an Artin stack of finite type
over a field k with affine stabilizers and Z ⊆ X a closed substack.

(i) Let Σ ⊆ Pic(X) be a subset such that for every geometric point x of
X∖Z, there is a line bundle L (x) ∈ Σ whose restriction to BAutX(x)
is trivial. Then i∗ induces an isomorphism

i∗ ∶ HBM
∗ (Z)[Σ−1

] → HBM
∗ (X)[Σ−1

]

where Σ acts via the first Chern class map c1 ∶ Pic(X) → H∗(X).
(ii) Let Σ ⊆ K0(X) be a subset such that for every geometric point x

of X ∖ Z, there is a K-theory class α(x) ∈ Σ whose restriction to
BAutX(x) is trivial. Then i∗ induces an isomorphism

i∗ ∶ Ĥ
BM
∗ (Z)Q[Σ−1

] → ĤBM
∗ (X)Q[Σ−1

]

where Σ acts via the Chern character isomorphism ch ∶ K0(X)Q →

Ĥ∗
(X)Q.

See Corollary 2.6 and Theorem 2.10. Here Ĥ∗ and ĤBM
∗ are defined like their

unhatted versions (0.1), except that the direct sum over n ∈ Z is replaced by
the product.

We can now specialize Theorem B to quotient stacks, to get the following
generalization of Theorem A to actions of general algebraic groups (see
Corollary 2.15).

Corollary C (Equivariant concentration). Let G be an fppf group scheme
acting on an Artin stack X of finite type over a field k with affine stabilizers.
Let Σ ⊆ K0(BG) be a subset of nonzero elements. Let Z ⊆X be a G-invariant
closed substack containing every point x of X such that no element of Σ is
sent to zero by K0(BG) → K0(BStGX(x)). Then

i∗ ∶ Ĥ
BM,G
∗ (Z)Q[Σ−1

] → ĤBM,G
∗ (X)Q[Σ−1

]

is an isomorphism, where Σ acts via the Chern character.

Remark 0.4. Our methods also give analogues of all the above results in
G-theory (= algebraic K-theory of coherent sheaves). This will be explained
elsewhere.

In topology, torus concentration goes back to Borel [Bor1] and was further
generalized by Atiyah–Segal [AS] and Quillen [Qui]. The statement of
Corollary C is very closely analogous to [Hsi, §3.2, Thm. III.1]. In algebraic
geometry, these statements were generalized (over the complex numbers)
to sheaf cohomology in [EM] and [GKM]. For Chow groups, an analogue
was proven by Edidin–Graham [EG2] for torus actions on schemes, and
generalized to Deligne–Mumford stacks by Kresch [Kre] (for rank one torii
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and assuming the base field is algebraically closed). The analogous statement
for Levine–Morel algebraic bordism was proven for smooth and projective
varieties over a field of characteristic zero by A. Krishna [Kri], and generalized
recently in [KP] to (possibly singular) quasi-projective schemes1. For global
quotient stacks, a concentration theorem was proven by A. Minets [Min]
under a fairly restrictive technical condition.

Our stacky concentration theorem (Theorem B) appears to be completely new.
We also briefly summarize some key new aspects of our torus concentration
theorem (Theorem A):

(i) In the case of schemes, it can be regarded as unifying the sheaf cohomol-
ogy versions with more recent versions in Chow groups and algebraic
bordism. Moreover, we also lift concentration to a statement about
Voevodsky motives (or MGL-modules).

(ii) For Deligne–Mumford stacks, our Chow statement generalizes [Kre]
to higher rank tori (and arbitrary bases). For singular Borel–Moore
and étale homology, the statement appears to be new in this case (and
indeed definitions of equivariant Borel–Moore homology of stacks have
only become possible relatively recently).

(iii) For Artin stacks, our result is new, except for the special case considered
in [Min]. Note also that our torus concentration theorem even works
without affine stabilizers assumptions.

(iv) We also prove a variant of concentration for non-quasi-compact schemes
and stacks; this requires some care as the naïve formulation of the
result does not hold. See Theorem 7.13 for an application to moduli
stacks of Higgs sheaves.

0.2. Atiyah–Bott localization. Let T be a split torus acting on a scheme
X. In the situation of torus concentration (Theorem A), suppose moreover
that X is smooth. Then the fixed locus XT is also smooth and the Atiyah-
Bott localization formula computes the inverse of the isomorphism i∗ (0.2)
in terms of the Gysin map i!: we have

(i∗)
−1

= i!(−) ∩ e(N)
−1 (0.5)

where e(N), the Euler class (= top Chern class) of the normal bundle, is
shown to be invertible in localized equivariant cohomology.

Now let X be a Deligne–Mumford stack with T -action. There is still a
closed substack Z, smooth when X is, which may be substituted for the fixed
locus (this is the reparametrized homotopy fixed point stack introduced in
Subsect. 0.4 below), and we show that the Atiyah–Bott localization formula
(0.5) still holds in this setting.

The Atiyah–Bott localization formula is one of the main computational
tools in enumerative geometry. For most applications, one wants to apply

1Krishna assumed the right-exact localization sequence for equivariant algebraic bordism,
which is still not known. The argument of [KP] bypassed this issue.
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it to a moduli stack which is singular but still quasi-smooth when regarded
with its derived structure. (For example, this is the case for moduli stacks
of stable maps and stable sheaves which are used in Gromov–Witten and
Donaldson–Thomas theory.) To that end, we prove a generalization of the
Atiyah–Bott formula to the case of quasi-smooth Deligne–Mumford stacks.

In fact, we show that the formula (0.5) applies word-for-word in this situation,
up to the following difficulties:

(a) The first problem is that, even though the fixed locus Z is still
quasi-smooth when X is, the inclusion of the fixed locus i ∶ Z → X
is not quasi-smooth (its relative cotangent complex has an extra
H−2 when X is not smooth). Therefore, there is no (virtual) Gysin
map i!. Nevertheless, we construct an i!T in localized T -equivariant
Borel–Moore homology.

(b) The normal bundle now has to be replaced by the “virtual normal
bundle”, i.e., the 1-shifted relative tangent bundle of i ∶ Z → X.
Since this is only a perfect complex, which we do not assume to
have a global resolution, we have to define an Euler class eT (Nvir)
in localized equivariant cohomology (and again show it is invertible).

With these ingredients we have the following result (see Corollary 5.30):

Theorem D (Virtual localization formula). Let X be a derived Deligne–
Mumford stack of finite type over k with T -action. Let Z ⊆ X be the
reparametrized homotopy fixed point stack. If X is quasi-smooth, then so is
Z and we have an equality

(i∗)
−1

= i!T (−) ∩ e
T
(Nvir

)
−1

of maps HBM,T
∗ (X)loc → HBM,T

∗ (Z)loc, where i ∶ Z → X is the inclusion.
Moreover, we have

[X]
vir

= i∗([Z]
vir
∩ eT (Nvir

)
−1

) (0.6)

in HBM,T
∗ (X)loc.

In particular, when X is proper we deduce a virtual integration formula by
push-forward to the point.

For smooth manifolds, the localization and integration formulas were first
proven by Atiyah–Bott [AB] and Berline–Vergne [BV]. In algebraic geometry,
the analogous formulas in Chow homology were proven for smooth schemes
by Edidin–Graham [EG2]. Kresch [Kre] generalized them to smooth Deligne–
Mumford stacks, for T rank one and k algebraically closed.

The virtual localization formula was proven in Chow homology by [GP] using
the language of perfect obstruction theories of Behrend–Fantechi [BF]. They
worked over the field of complex numbers and with rank one T , and assumed
the existence of a global T -equivariant embedding into an ambient smooth
stack, as well as a global resolution of the perfect obstruction theory. Later,
Chang–Kiem–Li [CKL] gave a different proof avoiding the global embedding
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and only requiring a global resolution of the virtual normal bundle Nvir.
Their argument is close in spirit to ours, but their use of the global resolution
(which is essential in their construction) makes our approach more direct.
A general virtual localization formula with no global resolution hypotheses
was desired by D. Joyce, see [Joy, Rem. 2.20]. Note that we also prove a
variant of Theorem D using the language of perfect obstruction theories;
this is convenient for applications, even though in practice we always expect
perfect obstruction theories of interest to come from derived structures.

In Subsect. 5.6 we prove a simple wall-crossing formula as in [KL2, §2.1,
App. A], [CKL, §4], and [Joy, Cor. 2.21], with no global resolution assumption
and over arbitrary base fields. This proves a non-symmetric analogue of [KL2,
Conj. 1.2]. We expect that this could be useful in the context of wall-crossing
for non-projective moduli spaces, e.g. moduli spaces of Bridgeland-stable
perfect complexes.

It could be interesting to use torus localization to compute enumerative
invariants in positive characteristic, such as Gromov–Witten, Donaldson–
Thomas, or Mochizuki’s Donaldson-type invariants, where the moduli stacks
are Artin with finite stabilizers but typically not Deligne–Mumford. For a
smooth quasi-projective variety X, the moduli space of stable objects on
X may not be proper. In that case, it may happen that there is a torus
action on X such that the fixed locus of the induced action on the moduli
space is proper. Then we may use the virtual localization formula to define
the enumerative invariants of X. For example, see the theories of local
Gromov–Witten and Donaldson–Thomas invariants [BP, MNOP, OP], and
the theory of Vafa–Witten invariants [TT1, TT2].

Let us briefly sketch the idea behind the construction of the Gysin pull-
back i!T . First, recall from [Kha2] that when f ∶ X → Y is a quasi-smooth
morphism (or admits a relative perfect obstruction theory), one can define a
specialization map

spX/Y ∶ HBM
∗ (Y ) → HBM

∗ (TX/Y [1]),

where TX/Y [1] is the 1-shifted tangent bundle (resp. the vector bundle
stack associated to the perfect obstruction theory). By homotopy invariance
for vector bundle stacks there is a canonical isomorphism HBM

∗ (TX/Y [1]) ≃
HBM
∗+2d(X)(−d), where d is the relative virtual dimension of X → Y . The

composite

f !
∶ HBM

∗ (Y ) → HBM
∗+2d(X)(−d)

is the virtual Gysin pull-back (see also [Man] in the Deligne–Mumford case).

As mentioned above, in the situation of Theorem D the inclusion of the fixed
locus i is usually not quasi-smooth. Nevertheless, the specialization map
above still exists without the quasi-smoothness hypothesis. Moreover, we
prove that in localized equivariant Borel–Moore homology there is an analogue
of the homotopy invariance property above which yields an isomorphism
HBM,T
∗ (TZ/X[1])loc ≃ HBM,T

∗ (Z)loc. Combining these two ingredients then
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gives the virtual Gysin pull-back i!T
i!T ∶ H

BM,T
∗ (X)loc → HBM,T

∗ (Z)loc.

The remaining input into Theorem D is then a functoriality property, which
in particular yields

i!T [X]
vir

= [Z]
vir.

0.3. Cosection localization. In this part we give a new point of view on
the theory of cosection localization of Y.-H. Kiem and J. Li [KL].

Let X be a derived stack with perfect cotangent complex. A cosection in
the sense of op. cit. is a morphism2

h0
(L∨X[1]) → h0

(OX)

in the category Qcoh(Xcl) of quasi-coherent sheaves on the classical trun-
cation Xcl. For us, a cosection will instead be a morphism in the derived
∞-category Dqc(X) of the form L∨X[1] → OX . In fact, we will prefer to look
at the dual morphism

OX → LX[−1]
which we can regard as a (−1)-shifted 1-form on X.

We introduce a notion of cohomological reduction of a (−1)-shifted 1-form
on X, and show:

Theorem E. Let X be a quasi-smooth derived Artin stack over k. For any
(−1)-shifted 1-form α ∶ OX → LX[−1] which admits a cohomological reduction
ρ, there exists a localized virtual fundamental class

[X]
vir
ρ ∈ HBM

∗ (X(α))

where X(α) is the derived zero locus of α, such that
i∗[X]

vir
ρ = [X]

vir

in HBM
∗ (X) where i ∶X(α) →X is the inclusion.

We also show an analogous “relative” statement for the (virtual) Gysin
map of a quasi-smooth morphism. At first approximation, a cohomological
reduction is a reduction of the specialization map in Borel–Moore homology.
However, the precise definition (and the proof of Theorem E) requires this
to be at the level of Borel–Moore chain complexes (as objects of the derived
∞-category), rather than homology. See Definition 6.2.

In [KL, KL3, KP] the idea is to use cone reductions, i.e., they show that for
X nice enough, the reduced intrinsic normal cone is contained in the “kernel
cone stack” of the cosection (compare Definition 6.4). We show that cone
reductions give rise to cohomological reductions (Proposition 6.5), but the
latter exist much more generally and have the advantage of also working in
positive characteristic and in the relative case (see Examples 6.8 and 6.9).

2Actually, in [KL] the authors look at “meromorphic cosections”, which are only
required to be defined on an open of X. For simplicity we will only consider globally
defined cosections in this paper.
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Our new approach using cohomological reduction relies crucially on the
“homotopical enhancements” of homology and intersection theory (specifically,
the specialization map) considered in [Kha2]. The proof of Theorem E is then
essentially immediate from the definitions. For example, in [KL3] studied
cosection localization in the setting of singular Borel–Moore homology, but
they had to pass to certain intersection homology groups [KL3, Rem. 3.2].
This is because, unlike our construction, they work at the level of homology
groups rather than complexes (as objects of the derived ∞-category).

We give some applications of this technique in enumerative geometry. For
example, let S be a smooth projective surface with h1(S) = 0 over an arbitrary
base field k. We define a (−1)-shifted 1-form on a derived enhancement of
the Hilbert scheme of divisors on S, which on the classical truncation is dual
to the cosection used in [CK] (for k = C). We also define a (−1)-shifted
1-form on the derived moduli stack of stable maps to S. This gives rise to a
derived reduction of the latter, which agrees with the construction of [STV]
when S is a K3 surface (and k = C). In particular in that case we recover
the reduced virtual cycle in Chow homology constructed by [MPT].

If X is a smooth projective threefold with holomorphic 2-form θ, we define a
(−1)-shifted 1-form on the moduli stack of Pandharipande–Thomas stable
pairs on X. We conjecture that this 1-form is closed (in the sense of [PTVV]).
Assuming this we obtain, if k is algebraically closed of characteristic zero,
either a reduced or localized virtual class for the moduli of stable pairs with
fixed curve class β and Euler characteristic n (depending on whether our
(−1)-shifted 1-form is nowhere zero on this component).

As for torus localization, the cosection localization technique can also be
used to define enumerative invariants when the ambient moduli stack is not
proper. For example, see the theory of stable maps with p-fields [CL, CJW]
and the theory of Vafa-Witten invariants for K3 surfaces [TT1, JT, MT].

0.4. Fixed loci on stacks. If T is a split torus acting on a scheme X, one
may think of the fixed locus XT as the locus where the action is trivial. In
the case of stacks, T can act nontrivially on the stabilizers of X, so there are
several non-equivalent ways we can make this precise. This leads to several
versions of the notion of “fixed locus” which we study in the appendix. Even
in the Deligne–Mumford case, careful treatments of such questions (that are
sufficient for applications in enumerative geometry, say) have only appeared
in the literature relatively recently in work of Alper–Hall–Rydh [AHR].

Let us begin by describing the various fixed loci we will consider at the level
of points. For any (field-valued) point x of X, consider the exact sequence

1→ AutX(x) → AutX(x)
α
Ð→ Tk(x)

where X = [X/T ] is the quotient stack and Tk(x) = T ×k k(x) is the base
change to the residue field. The image of the homomorphism α may be
thought of as the T -stabilizer StT (x) at x. Then we may consider the
following possible variants of the condition “StT (x) = Tx”:
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(i) α is surjective;
(ii) α restricts to a surjection on a maximal subtorus T ′ ⊆ AutX(x);
(iii) α admits a group-theoretic section.

We will see that these all define closed subsets of ∣X ∣ (for nice enough
X), such that ∣XhT ′ ∣ = ∣XsT ∣ and ∣XhT ′ ∣ → ∣XT ∣ is surjective, up to some
reparametrization T ′↠ T . Here ∣X ∣ denotes the underlying topological space
of X.

To enhance these subsets to stacks, it is appropriate to replace these conditions
with properties. We will prove:

Theorem F. Let X be an Artin stack of finite type over k with affine
stabilizers. Then we have:

(i) Let XhT be the stack of group-theoretic sections of α, i.e. the mapping
stack of T -equivariant morphisms

MapTS(S,X),

where S is regarded with trivial T -action, or equivalently the Weil
restriction of X = [X/T ] → BT along BT → Spec(k). Then XhT →X
is a closed immersion if X is Deligne–Mumford.

(ii) Let XsT be the stack Xr ×XX, where Xr ⊆ X is the locus of r-
dimensional stabilizers where r = rk(T ) (compare [ER, App. C],
and see Definition A.51 for the precise definition). Then XsT →X
is a closed immersion if X is tame Artin.

(iii) There exists a reparametrization T ′↠ T such that (a) XhT ′ → XT

is surjective on field-valued points and (b) XhT ′ = XsT as closed
substacks of X.

The stack XhT has been studied extensively by Romagny [Rom2, Rom3,
Rom4]. See also [CGP, Prop. A.8.10] for the case where X is a scheme and
[Dri] for the case of X an algebraic space and T of rank one. Informally
speaking, group-theoretic sections of α correspond to fixed points x together
with isomorphisms t ⋅ x ≃ x for all t ∈ T . This is the homotopy theorists’
notion of homotopy fixed points (see e.g. [Tho1]).

The reparametrized version XhT ′ has been studied, for T of rank one, by
Alper–Hall–Rydh [AHR, §5.4] (see also [Kre, 5.3.4] for k algebraically closed).

Our definition of XsT is inspired by that of Edidin–Rydh’s locus of maximal-
dimensional stabilizers [ER, App. C].

0.5. Conventions, notation and terminology. We work over a fixed
base ring k.

0.5.1. Stacks. Except in the introduction, we work with higher stacks through-
out the paper.
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A prestack is a presheaf of ∞-groupoids on the site of k-schemes. A stack is
a prestack that satisfies hyperdescent with respect to the étale topology.

A stack is 0-Artin if it is an algebraic space, i.e., if it has schematic and
monomorphic (= (−1)-truncated) diagonal3 and admits a surjective étale
morphism from a k-scheme. A stack is n-Artin, for n > 0, if it has (n − 1)-
representable diagonal and admits a surjective smooth morphism from a
scheme. A stack is Artin if it is n-Artin for some n. A stack is Deligne–
Mumford if it has representable (= 0-representable) diagonal and admits a
surjective étale morphism from a scheme, or equivalently if it is 1-Artin with
unramified diagonal.

In the above definitions, a morphism of prestacks f ∶ X → Y is called
schematic, resp. (n − 1)-representable, if for every scheme S and every
morphism S → Y , the base change X ×Y S is a scheme, resp. (n − 1)-Artin.
An (n − 1)-representable morphism f ∶ X → Y is étale (resp. smooth, flat,
surjective), if for every scheme S and every morphism S → Y , there exists a
scheme U such that the morphism of (n−1)-representable stacks X ×Y S → S
is étale (resp. smooth, flat, surjective).

See [Gai, §4.2] or [Toë2, §3.1] for more details (our particular conventions
agree with the former).

0.5.2. Points of stacks. A point of a prestack X is a field-valued point, i.e.,
a morphism x ∶ Spec(k(x)) → X where k(x) is a field (which we call the
residue field at x). A geometric point of X is a field-valued point x whose
residue field k(x) is an algebraic closure of a residue field of k at a prime
ideal p. A morphism of stacks is surjective if it is surjective on geometric
points.

The set of points of X, denoted ∣X ∣, is the colimit
lim
Ð→
κ

π0X(κ),

taken over fields κ, in the category of sets. Here π0X(κ) is the set of connected
components of the ∞-groupoid X(κ), and given a field extension κ′ → κ,
the corresponding transition arrow is the map induced by X(κ′) →X(κ) on
sets of connected components. When X is 1-Artin, ∣X ∣ admits a canonical
structure of topological space (see e.g. [SP, Tag 04XL]).

0.5.3. Stabilizers of stacks. Let X be a 1-Artin stack and x a point. The sta-
bilizer at x is the group algebraic space AutX(x) of automorphisms of x. This
can be defined equivalently as the fibred product Spec(k(x))×X Spec(k(x)),
the fibre of the diagonal X →X ×X over (x,x), or the fibre of the projection
of the inertia stack IX →X over x.

We say a 1-Artin stack X has affine stabilizers if for every point x of X, the
stabilizer AutX(x) is affine. If X has affine inertia or affine diagonal, then it
has affine stabilizers.

3hence in particular takes values in sets (= 0-truncated ∞-groupoids)
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We say that X has finite stabilizers if for every point x the stabilizer AutX(x)
is finite (over Spec(k(x))), or equivalently if X has quasi-finite diagonal. If
X is Deligne–Mumford or has quasi-finite inertia, then it has finite stabilizers.

0.5.4. Derived stacks. Replacing “scheme” by “derived scheme” everywhere
in (0.5.1), we get the notions of derived (n-Artin) (pre)stacks. See e.g. [Gai,
§4.2] or [Toë2, §5.2].

Any derived (pre)stack X has an underlying classical truncation Xcl, which
is a (pre)stack equipped with a canonical morphism Xcl →X which induces
an isomorphism on S-valued points Xcl(S) ≃X(S) whenever S is a classical
scheme. If X is derived n-Artin, then Xcl is n-Artin. Recall that for a mor-
phism f ∶X → Y the properties of affineness, representability, separatedness,
and properness are all detected on classical truncations.

If X is a derived 1-Artin stack, it has the same (field-valued) points as its
classical truncation Xcl, and we define the stabilizer at a point x to be the
stabilizer at x of Xcl, i.e., AutX(x) ∶= AutXcl

(x) (0.5.3).

0.5.5. Finite type and finite presentation hypotheses. A morphism of derived
Artin stacks is (locally) of finite type or (locally) of finite presentation if it
the induced morphism on classical truncations has the respective property.
It is homotopically of finite presentation if it is locally of finite presentation
and the relative cotangent complex is perfect.

We denote by StkS (resp. dStkS) the ∞-category of (resp. derived) Artin
stacks that are locally of finite type over S and have quasi-compact and
separated diagonal.

0.5.6. Perfect and coherent complexes. Let X be a derived Artin stack.
We have the stable ∞-category Dqc(X) of quasi-coherent complexes on X
and the full subcategories Dcoh(X) and Dperf(X) of coherent and perfect
complexes, respectively. We write D⩾n

perf(X) for the full subcategory of perfect
complexes of Tor-amplitude ⩾ n (or [n,∞)), using cohomological grading.
See e.g. [Kha4, §1].
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1. Intersection theory on stacks

In this section we briefly summarize the definitions and main properties of
Borel–Moore homology of Artin stacks, and the derived specialization map,
from [Kha2].

1.1. Borel–Moore homology. We let D be a six functor formalism, incar-
nated as a constructible ∞-category in the sense of [Kha3] (a.k.a. a motivic
∞-category in the sense of [Kha1, CD1]), on locally of finite type k-schemes.
We will assume that D is oriented, meaning that it admits a theory of Thom
isomorphisms (and hence that the corresponding cohomology admits Chern
classes). For example:

(i) Betti: Let k be a C-algebra, Λ a commutative ring, and D(X) the
derived ∞-category of sheaves of Λ-modules on the topological space
X(C).

(ii) Étale: Let Λ be a commutative ring of characteristic n > 0, n ∈ k×, and
D(X) the derived ∞-category of sheaves of Λ-modules on the small
étale site of X. (One may also take `-adic coefficients, see e.g. [LZ2]).

(iii) Rational motives: Let k be a noetherian commutative ring, assume Λ
contains Q, and let D(X) be the ∞-category of Beilinson motives as
in [CD1, §14].

(iv) Integral motives: Let Λ be a commutative ring and D(X) the ∞-
category DHΛ(X) of modules over the motivic Eilenberg–MacLane
spectrum HΛX as in [Spi]. When k is a field whose characteristic is
zero or invertible in Λ, this is equivalent to the ∞-category of integral
motives defined in [CD2] (by Theorem 5.1 in op. cit.). (This is a
relative version of Voevodsky motives: for X = Spec(k) it recovers the
construction of [Voe].)

(v) Cobordism motives: Let Λ be a commutative ring and D(X) the ∞-
category DMGL(X) of modules over Voevodsky’s algebraic cobordism
spectrum MGLX (see e.g. [EHKSY]). (This may be regarded as the
universal example: see Remark 1.7 below.)

We extend this to locally of finite type Artin stacks over k as in [Kha2,
App. A] (see also [Kha5]). (When D satisfies étale descent, as in the first
three examples, this coincides with the construction of [LZ1].) For every
X ∈ dStkk we let 1X ∈ D(X) denote the monoidal unit, and we introduce
the notation ⟨n⟩ for the endofunctor (n)[2n] ∶ D(X) →D(X) where n ∈ Z
and (n) denotes Tate twist.

Definition 1.1. Let X ∈ dStkk with projection aX ∶ X → Spec(k). Given
an object Λ ∈ D(Spec(k)) we define the following objects of D(Spec(k)):
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(i) Cochains: C●(X; Λ) ∶= aX,∗a
∗
X(Λ).

(ii) Borel–Moore chains: CBM
● (X; Λ) ∶= aX,∗a

!
X(Λ).

If Λ has a commutative ring structure, then it induces one on C●(X; Λ) (cup
product), and CBM

● (X; Λ) is a module over it (cap product). In the following,
we will keep Λ fixed and leave it implicit in the notation.

Remark 1.2. It follows from the definition of D(X) for X ∈ dStkk that
CBM
● (X; Λ) can be described as a homotopy limit

CBM
● (X; Λ) ≃ lim

←Ð
(U,u)

CBM
● (U)⟨−du⟩

over the category of pairs (U,u) where U ∈ dStkk is schematic and u ∶ U →X
is a smooth morphism of relative dimension du, and smooth morphisms
between them; the transition arrows are given by smooth Gysin pull-backs.

Variant 1.3 (Relative). If f ∶X → S is locally of finite type where S ∈ dStkk,
we have relative Borel–Moore chains:

CBM
● (X/S) ∶= f∗f

!
(ΛS) ∈ D(S),

where ΛS = a∗S(Λ) for aS ∶ S → Spec(k) the projection. (As X and S vary
these form a “homotopically enhanced” version of a bivariant theory in
the sense of [FM]; see [DJK] for this perspective). Note that CBM

● (X) =

CBM
● (X/k) and C●(X) = CBM

● (X/X).

Variant 1.4 (Equivariant). Let S ∈ dStkk and X ∈ dStkS . For G an fppf
group algebraic space over k we write

C●
G(X) ∶= C●

([X/G]),

CBM,G
● (X) ∶= CBM

● ([X/G]/BG),

for the G-equivariant cochains and G-equivariant Borel–Moore chains of X.

Notation 1.5. We consider the “periodizations”:

C●
(X)⟨∗⟩ ∶= ⊕

n∈Z
C●

(X)⟨n⟩,

CBM
● (X)⟨∗⟩ ∶= ⊕

n∈Z
CBM
● (X)⟨−n⟩,

and similarly for relative Borel–Moore chains. Thus for example

π∗(CBM
● (X)⟨∗⟩) = HBM

∗ (X)

where the right-hand side is as in the introduction. We also define Ĉ●(X)⟨∗⟩

and ĈBM
● (X)⟨∗⟩ similarly, but with direct sum replaced by direct product.

Example 1.6. Let D = DHΛ be the constructible ∞-category of motives
with coefficients in a commutative ring Λ, and suppose k is a field whose
characteristic is zero or invertible in Λ. Then for every finite type k-scheme
X, the derived global sections of the (twisted) Borel–Moore motive of X is

RΓ(CBM
● (X)⟨−n⟩) ≃ zn(X)Λ
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where the right-hand side is the Λ-linear Bloch cycle complex. Taking
homotopy groups, we have

πsRΓ(CBM
● (X)⟨−n⟩) ≃ CHn(X,s)Λ

where the right-hand side is Bloch’s higher Chow group (with coefficients
in Λ). In particular, for s = 0 we recover the usual Chow group of n-cycles
on X with coefficients in Λ, and CBM

● (X)⟨∗⟩ is a spectrum whose π0 is the
total Chow group CH∗(X)Λ.

Remark 1.7. The constructible ∞-category DMGL of modules over Voevod-
sky’s algebraic cobordism spectrum MGL can be regarded as the universal
six functor formalism which is oriented in a homotopy coherent sense (cf.
[EHKSY]). Oriented constructible ∞-categories in nature are equipped with
a canonical morphism R∗ ∶ DMGL → D (which moreover factors through
Voevodsky motives DM when the orientation is via the additive formal
group law), i.e. a natural transformation such that R∗ ∶ DMGL(X) →D(X)

is a colimit-preserving functor for each X ∈ dStkk and which commutes with
⊗, ∗-inverse image, and smooth !-direct image. (Such a universal property
can be made precise with rational coefficients, cf. [CD1, Cor. 14.2.16].)

Given a constructible ∞-category D with a morphism R ∶ DMGL →D and
an object Λ ∈ D(k), we have by adjunction

CBM
● (X/S ; Λ) ≃ CBM

● (X/S ;R∗Λ)

where R∗ is the right adjoint of the colimit-preserving functor R∗, and
the right-hand side is formed with respect to the six functor formalism
DMGL. In particular, it will generally be harmless for our purposes to assume
that D = DMGL, e.g. that D is compactly generated or even constructibly
generated in the sense of [DFJK, Def. A.7].

1.2. Localization triangle.

Theorem 1.8. Let S ∈ dStkk, X ∈ dStkS, and i ∶ Z → X, j ∶ U → X a pair
of complementary closed and open immersions. Then there is a canonical
exact triangle

CBM
● (Z/S)

i∗
Ð→ CBM

● (X/S)
j!

Ð→ CBM
● (U/S)

in D(S).

The localization triangle is compatible with proper push-forward and quasi-
smooth Gysin maps:

Lemma 1.9. Let S ∈ dStkk and suppose given a diagram

Z ′ X ′ U ′

Z X U

i′

fZ

j′

f fU

i j

of commutative squares in dStkS, where (i, j) and (i′, j′) are pairs of com-
plementary closed and open immersions, where f , fZ , and fU are proper.
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Then there is a commutative diagram

CBM
● (Z ′

/S) CBM
● (X ′

/S) CBM
● (U ′

/S)

CBM
● (Z/S) CBM

● (X/S) CBM
● (U/S).

i′∗

fZ,∗

j′!

f∗ fU,∗

i∗ j!

Lemma 1.10. Let S ∈ dStkk and suppose given a diagram

Z ′ X ′ U ′

Z X U

i′

fZ

j′

f fU

i j

of homotopy cartesian squares in dStkS, where i and j are complemen-
tary closed and open immersions and f is quasi-smooth. Then there is a
commutative diagram

CBM
● (Z/S) CBM

● (X/S) CBM
● (U/S)

CBM
● (Z ′

/S) CBM
● (X ′

/S) CBM
● (U ′

/S).

i∗

f !
Z

j!

f ! f !
U

i′∗ j′!

Proof. The left-hand square commutes by base change for quasi-smooth Gysin
maps, and the right-hand square commutes by functoriality of quasi-smooth
Gysin maps. �

1.3. Specialization to the normal bundle. We recall the derived defor-
mation space from [HKR] (see also [Kha2, Thm. 1.3]).

Theorem 1.11. Let f ∶ X → Y be a homotopically finitely presented mor-
phism in dStkk. Then there exists a commutative diagram of derived Artin
stacks

X X ×A1 X ×Gm

NX/Y DX/Y Y ×Gm

Y Y ×A1 Y ×Gm

0

0 f̂ f×id

i j

0

(1.12)

where each square is homotopy cartesian.

Proof. See [HKR]; we sketch the proof here. One defines DX/Y as the derived
Weil restriction of X → Y along the inclusion 0 ∶ Y ↪ Y ×A1, or equivalently
the derived mapping stack MapY ×A1(Y × {0},X ×A1). It is easy to see that
this derived stack satisfies the desired properties, and the nontrivial part
is the algebraicity (i.e., that it is Artin). If the base k is a derived G-ring
which admits a dualizing complex (e.g., k is of finite type over a field or Z),
then we can appeal to [HLP, Thm. 5.1.1]. In general, see [HKR]. �
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Construction 1.13 (Specialization). Let S ∈ dStkk and f ∶ X → Y a
homotopically of finite presentation morphism in dStkS . Consider the pair
of complementary closed and open immersions

NX/Y
i
Ð→DX/Y

j
←Ð Y ×Gm.

In the localization triangle

CBM
● (NX/Y /S

)
i∗
Ð→ CBM

● (DX/Y /S
)
j!

Ð→ CBM
● (Y ×Gm/S),

the boundary map
∂ ∶ CBM

● (Y ×Gm/S)[−1] → CBM
● (NX/Y /S

)

gives rise to the specialization map

spX/Y ∶ CBM
● (Y/S)

incl
ÐÐ→ CBM

● (Y/S) ⊕CBM
● (Y/S)(1)[1]

≃ CBM
● (Y ×Gm/S)[−1] ∂

Ð→ CBM
● (NX/Y /S

), (1.14)

where the splitting comes from the unit section 1 ∶ Y → Y ×Gm.
Proposition 1.15 (Specialization and proper push-forward). Let S ∈ dStkk
and suppose given a commutative square ∆

X ′ Y ′

X Y.

f ′

q

f

in dStkS. Suppose that q is proper and the square is cartesian on classical
truncations. Then there is a canonical homotopy

N∆,∗ ○ spX′/Y ′ ≃ spX/Y ○ q∗

of maps CBM
● (Y ′

/S) → CBM
● (NX/Y /S

).

Proof. As in the proof of Proposition 1.17, the assumption implies that
D∆ ∶ DX′/Y ′ → DX/Y is proper (see [HKR]), so the claim follows from
the compatibility of the localization triangle with proper direct image
(Lemma 1.9). �

Corollary 1.16. Let S ∈ dStkk and i ∶ Z →X a closed immersion in dStkS.
Denote by 0 ∶ Z → NZ/X the zero section of the derived normal bundle. Then
there is a canonical homotopy

spZ/X ○ i∗ ≃ 0∗
of maps CBM

● (Z/S) → CBM
● (NZ/X /S

).

Proof. Apply Proposition 1.15 to the self-intersection square

Z Z

Z X

i

i

and note that spZ/Z = id. �
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Proposition 1.17 (Specialization and quasi-smooth pull-backs). Let S ∈

dStkk and suppose given a commutative square ∆

X ′ Y ′

X Y.

f ′

q

f

in dStkS. Suppose that q and the induced morphism N∆ ∶ NX′/Y ′ → NX/Y

are both quasi-smooth. (For example, suppose q is quasi-smooth and the
square ∆ is homotopy cartesian.) Then there is a canonical homotopy

N !
∆ ○ spX/Y ≃ spX′/Y ′ ○ q!

of maps CBM
● (Y/S) → CBM

● (NX′/Y ′
/S

)⟨−d⟩, where d is the relative virtual
dimension of q.

Proof. Consider the following commutative diagram:

NX′/Y ′ DX′/Y ′ Y ′ ×Gm

NX/Y DX/Y Y ×Gm

{0} A1 Gm

N∆ D∆ q×id

Note that both upper squares are homotopy cartesian (since the lower squares
and the left-hand and right-hand composite rectangles all are). Therefore,
the morphism D∆ is quasi-smooth (since this can be checked fibrewise). By
construction of the specialization maps, it is enough to show the following
square commutes:

CBM
● (Y ×Gm/S)[−1] CBM

● (NX/Y /S
)

CBM
● (Y ′ ×Gm/S)[−1] CBM

● (NX′/Y ′
/S

)

∂NX/Y /DX/Y

(q×id)! N !
∆

∂NX′/Y ′ /DX′/Y ′

where the horizontal arrows are the boundary maps in the respective local-
ization triangles. But this follows from Lemma 1.10 applied to the above
diagram. �

Remark 1.18. Let f ∶ X → Y be a quasi-smooth morphism in dStkk.
Denote by 0 ∶X → NX/Y the zero section. Applying Proposition 1.17 to the
commutative square

X X

X Y

f

f

recovers the fact that
f !

≃ 0!
○ spX/Y
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which was in fact our definition of the left-hand side.

1.4. Projective bundle formula.

Theorem 1.19. Let S ∈ dStkk and X ∈ dStkS. Let E be a locally free sheaf
on X of rank r + 1 (r ⩾ 0), and write π ∶ P = P(E ) → X for the associated
projective bundle. Then the maps

π!
(−) ∩ e(O(−1))∪i ∶ CBM

● (X/S) → CBM
● (P/S)⟨−r + i⟩,

induce a canonical isomorphism of C●(X)-modules

⊕
0⩽i⩽r

CBM
● (X/S)⟨r − i⟩ → CBM

● (P/S). (1.20)

Proof. The map (1.20) is the limit over smooth morphisms t ∶ T →X with T
a scheme of the analogous maps

⊕
0⩽i⩽r

CBM
● (T/S)⟨r − i − dt⟩ → CBM

● (T ×
S
P/S)⟨−dt⟩,

where dt is the relative dimension of t ∶ T → X. We may therefore assume
that X is a scheme. By Zariski descent on X, we may further assume that E
admits a trivial direct summand. It is therefore enough to show the following:

(∗) If (1.20) is invertible for E = E0 (locally free of rank r), then it is also
invertible for E = E0 ⊕O.

Let P0 = P(E0), P = P(E0 ⊕ O), and E = V(E ) = P ∖ P0. Consider the
following diagram:

⊕
r−1
0 CBM

● (X/S)⟨r − 1 − i⟩ ⊕
r
0 CBM

● (X/S)⟨r − i⟩ CBM
● (X/S)⟨r⟩

CBM
● (P0/S) CBM

● (P/S) CBM
● (E/S)

where the upper row is split exact and the lower horizontal row is the
localization triangle. The right-hand vertical arrow is Gysin along the
projection E → X (which is invertible by homotopy invariance), and the
left-hand and middle vertical arrows are (1.20) for E = E0 and E = E0 ⊕O,
respectively. Hence it will suffice to show that this diagram is commutative.

The inclusion i ∶ P0 ↪ P exhibits P0 as the derived zero locus on P of the
cosection π∗(OP (−1))⊕OP → OP (the projection onto the second component),
so we have a canonical homotopy

i∗i
!
(−) ≃ (−) ∩ e(OP (−1))

of maps CBM
● (P/S) → CBM

● (P/S)⟨1⟩. The induced homotopy

i∗π
!
0(−) ≃ π

!
(−) ∩ e(OP (−1)),

where π0 ∶ P0 → X and π ∶ P → X are the projections, then gives rise to a
homotopy up to which the left-hand square in the above diagram commutes.
Since OP (−1) on P restricts to the trivial line bundle on E, there are
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canonical homotopies e(OP (−1))∪i∣E ≃ 0 for all i > 0, whence a homotopy up
to which the right-hand square also commutes. The claim follows. �

1.5. Proper (co)descent. The assignment X ↦ D(X) determines two
presheaves of ∞-categories D∗ and D! on the ∞-category dStkk, where D?

is given by X ↦D(X) on objects and f ↦ f? on morphisms (for ? ∈ {∗, !}).
In the following statement, proper descent means Čech descent with respect
to proper 1-Artin surjective morphisms between Artin stacks.

Remark 1.21. Following [CD1, Def. 2.1.7], a constructible ∞-category D is
semi-separated if f∗ is conservative for every finite radicial surjection f , and
separated if it is semi-separated and f∗ is conservative also for every finite
étale surjection f ; note that these properties can be checked on schemes, by
descent. For example, the derived ∞-category of étale sheaves (say with
Z/nZ-coefficients where n is prime to the residue characteristics of k) is
separated, and every (resp. oriented) constructible ∞-category with rational
coefficients is semi-separated (resp. separated) (see [EK]).

Theorem 1.22. If D is separated, then the presheaves D∗ and D! satisfy
proper descent. Moreover, for S ∈ dStkk over k and any F ∈ D(S), we have:

(i) The assignment (f ∶X → S) ↦ f∗f
∗(F), regarded as a D(S)-valued

presheaf on the ∞-category dStkS, satisfies proper descent.
(ii) The assignment (f ∶ X → S) ↦ f!f

!(F), regarded as a D(S)-valued
presheaf on the ∞-category dStkS, satisfies proper co-descent.

See [Kha5] for the proof of Theorem 1.22.

Corollary 1.23 (Proper codescent). Assume D is separated. Let S ∈ dStkk
and p ∶X ↠ Y a proper 1-Artin surjective morphism between X,Y ∈ dStkS.
Then CBM

● (Y/S) is the homotopy colimit of the Čech nerve

⋯ →→→ CBM
● (X ×

Y
X/S) ⇉ CBM

● (X/S),

regarded as a simplicial diagram in D(S).

1.6. Invariance for torsors under finite groups.

Theorem 1.24. Let D be separated (see Remark 1.21). Let S ∈ dStkk,
X,Y ∈ dStkS, and G a finite group scheme4 of multiplicative type over X.
Then for every BG-torsor f ∶ Y →X over S, the direct image map

f∗ ∶ CBM
● (Y/S) → CBM

● (X/S)

is invertible.

Proof. By étale descent for D we may assume that X is affine, G is diagonal-
izable, and f is trivial, i.e. Y =X ×BG. Note that if G is a product H ×H ′

(of group schemes over X), then by base change it is enough to show the
claim for G =H and G =H ′. Since G is diagonalizable it is enough to treat

4i.e., a group stack which is finite schematic over X
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G = µn,X , hence G is either finite étale over X or Gred ≃ X. In the latter
case the claim follows from nilpotent invariance of CBM

● and in the former
case we may use étale descent again to reduce to the case where G is finite
discrete.

Thus let G be a finite discrete group scheme and let us show that f∗ ∶

CBM
● (BG/S) → CBM

● (X/S) is invertible. Let s ∶X ↠ BG denote the quotient
map. Consider the simplicial diagram of direct image maps

CBM
● (G●+1

/S )hG → CBM
● (G●

/S)

where G●, resp. G●+1 is the Čech nerve of X ↠ BG, resp. G↠X. This is
an isomorphism in every degree by finite Galois codescent (since G acts freely
on G and its iterated fibre powers over S). By proper codescent, passing to
the colimit gives rise to the isomorphism

s∗ ∶ CBM
● (X/S) ≃ CBM

● (X/S)hG → CBM
● (BG/S)

where the isomorphism on the left is because G acts trivially on X. Since
f∗s∗ ≃ id, it follows that f∗ is also invertible as claimed. �

1.7. Reduction to the subtorus.

Theorem 1.25. Let S ∈ dStkk and X ∈ dStkS. Suppose G = GLn acts on
X and denote by T ⊆ G the subgroup of diagonal matrices. Then Gysin
pull-back along the smooth morphism p ∶ [X/T ] → [X/G]

p!
∶ CBM

● ([X/G]/S) → CBM
● ([X/T ]/S)⟨−d⟩,

where d = dim(G/T ), admits a C●([X/G])-module retract. Moreover, after
rationalization it induces an isomorphism

p!
∶ CBM

● ([X/G]/S)Q → CBM
● ([X/T ]/S)

hW
Q ,

where (−)hW denotes homotopy invariants with respect to the W -action
induced by the canonical W -action on [X/T ].

Proof. Since [X/T ] → [X/B] is an affine bundle, where B ⊆ G is the Borel
subgroup, the Gysin map

CBM
● ([X/B]/S) → CBM

● ([X/T ]/S)

is invertible by homotopy invariance. Therefore, it is enough to show that
the Gysin map

CBM
● ([X/G]/S) → CBM

● ([X/B]/S)

admits a retract. Under the Morita isomorphism [X/B] ≃ [(X ×G/B)/G]

(with G acting on G/B by conjugation), this is identified with the Gysin map
f !
∶ CBM

● ([X/G]/S) → CBM
● ([(X ×G/B)/G]/S)

where f ∶ [(X ×G/B)/G] → [X/G] is the canonical morphism. Note that f
is proper (since G/B is proper over k), so that there is a proper push-forward
f∗. We claim that this provides the desired retract. Indeed, since G/B is
the scheme of complete flags in An

X over X, the projection f factors as a
sequence of iterated projective bundles. Thus the claim follows from the
fact that for a projective bundle π, the pullback π! admits a retract by the
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projective bundle formula (Theorem 1.19), cf. [Ful, Ex. 3.3.5]. The second
part follows similarly from the projective bundle formula; see again loc. cit.
and also recall that with rational coefficients, the homotopy groups of the
homotopy invariants can be computed as the ordinary invariants of the
homotopy groups. �

1.8. The Chern character. Let R be an oriented motivic commutative
ring spectrum over k, e.g., a commutative ring object in DMGL(Spec(k)).
Then its rationalization RQ is canonically an algebra over Qmot⟨∗⟩ (see [CD1,
Cor. 14.2.16]), and hence over KGL via the Chern character map

KGL→ KGLét
Q ≃∏

n

Qmot
⟨n⟩.

Here is KGL is Voevodsky’s algebraic K-theory spectrum. For example, for
any fppf group algebraic space G over k, there is a ring homomorphism

R(G) ≃ K0(BG) → π0Ĉ●
(BG;RQ)

where R(G) is the representation ring.

In particular, if D is rational in the sense that SH(k) → D(k) factors
through SH(k)Q,+ (cf. [CD1, Cor. 14.2.16]), then for any object Λ ∈ D(k)

and X ∈ dStkk with G-action it follows that Ĉ●
G(X; Λ) is K(BG)-module.

2. Concentration

In this section we assume the base ring k is noetherian. Let Λ ∈ D(k) be
an object, fixed throughout the section. As per our conventions recalled in
Subsect. 1.1, we will leave Λ implicit in the notation.

2.1. The master theorem. Given any set Σ of line bundles on an Artin
stack X, our main result is a stabilizer-wise criterion for torsionness of Borel–
Moore chains on X with respect to the first Chern classes of the line bundles
in Σ.

Notation 2.1. Let X ∈ dStkk be quasi-compact and let Σ ⊆ Pic(X) be a
subset. We denote by

C●
(X)loc ∶= C●

(X)Σ-loc ∶= C●
(X)⟨∗⟩[c1(Σ)

−1
]

the localization, and similarly for CBM
● (X)loc ∶= CBM

● (X)Σ-loc.

Definition 2.2. Let X ∈ dStkk and Σ ⊆ Pic(X) a subset. We introduce the
following condition on Σ:

(L) For every geometric point x of X, there exists an invertible sheaf L (x) ∈ Σ
whose restriction L (x)∣BAutX(x) is trivial.

Remark 2.3. If k is a field, we may also consider variants of condition (L)
where we look at k-rational points or k̄-rational points for an algebraic
closure k̄ of k. The distinction between these versions will play no role in our
proofs, so we may sometimes abuse language by referring to any of them as
“condition (L)” when there is no risk of confusion. The same applies for other
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variants of this condition that we will consider below, such as conditions (K)
and (LG).

The main result of this section is as follows:
Theorem 2.4. Let S ∈ dStkk, X ∈ dStkS quasi-compact 1-Artin with affine
stabilizers, and Σ ⊆ Pic(X) a subset. If Σ satisfies condition (L) for X, then
we have

CBM
● (X/S)Σ-loc = 0.

Corollary 2.5. Let X ∈ dStkk be quasi-compact 1-Artin with affine stabilizers.
If Σ satisfies condition (L) for X, then we have C●(X)Σ-loc = 0.

Proof. Take S = X in Theorem 2.4. �

Corollary 2.6. Let S ∈ dStkk, Z,X ∈ dStkk quasi-compact 1-Artin with
affine stabilizers, and i ∶ Z→ X a closed immersion over S. Let Σ ⊆ Pic(X)

be a subset satisfying condition (L) for X ∖ Z. Then the direct image map
i∗ ∶ CBM

● (Z/S)Σ-loc → CBM
● (X/S)Σ-loc

is invertible.

Proof. Follows by the localization triangle. �

Remark 2.7. Taking homotopy groups, we recover the statements about
HBM
∗ (−)loc made in the introduction. See [Lur1, Prop. 7.2.3.25(2)].

We will also consider the following variant where Σ is a set of K-theory
classes.
Variant 2.8. Let Σ ⊆ K0(X) be a set of K-theory classes on X. We may
consider the following variant of condition (L):

(K) For every geometric point x of X, we have
K0(BAutX(x))[Σ

−1
] = 0,

where the action of Σ is given by inverse image along BAutX(x) → X.
Remark 2.9. Condition (K) can be reformulated as follows: for every
geometric point x of X, there exists a K-theory class α(x) ∈ K0(X) which
belongs to the multiplicative closure of Σ such that α(x)∣BAutX(x) = 0.

Recall from Subsect. 1.8 that when we work with rational coefficients, there is
also canonical action of K-theory on Borel–Moore chains via the Chern char-
acter. As in Notation 2.1 we write (−)Σ-loc for the localization (−)⟨∗⟩[Σ−1]
We have the following analogue of Theorem 2.4:
Theorem 2.10. Suppose that D is rational in the sense of Subsect. 1.8.
Let S ∈ dStkk, X ∈ dStkS quasi-compact 1-Artin with affine stabilizers, and
Σ ⊆ K0(X) a subset. If Σ satisfies condition (K) for X, then we have

ĈBM
● (X/S)Σ-loc ∶= ĈBM

● (X/S)⟨∗⟩[Σ−1
] = 0.

Recall the notation ĈBM
● (−)⟨∗⟩ from Notation 1.5.
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2.2. Generic slices. The proof of Theorem 2.4 will require a useful result
of Thomason (see [Tho2, Thm. 4.10, Rem. 4.11]) which we reformulate here
in stacky terms for the reader’s convenience.
Proposition 2.11. Let T be a diagonalizable torus of finite type over a
noetherian scheme S. Let X be a reduced algebraic space of finite type over
S with T -action. Then there exists a T -invariant nonempty affine open
subspace U ⊆X such that there is a canonical isomorphism

[U/T ] ≃ BT ′ ×
S
V

of stacks over BT , for some subgroup T ′ ⊆ T and affine scheme V over S.

Proof. Recall that the schematic locus X0 ⊆ X is a nonempty open (see
[SP, Tags 03JH, 03JG]). We claim that X0 is T -invariant, i.e., the action
morphism T ×SX0 → X factors through X0. In other words, the open
immersion T ×SX0 ×X X0 → T ×SX0 (base change of the inclusion X0 →X)
is invertible. We may assume that S is the spectrum of an algebraically
closed field k, and it will suffice to check this on k-points. Let t ∶ Spec(k) → T
be a k-point. Then t defines an isomorphism t ∶ X → X. Then t(X0) ⊆ X
is a scheme and hence t(X0) ⊆ X0 (since X0 is the largest open which is a
scheme). Since t was arbitrary, this shows that X0 is T -invariant.

Replacing X by X0, we may assume that X is a scheme. Now the claim
follows by combining [Tho2, Lem. 4.3]5 and [Tho2, Thm. 4.10, Rem. 4.11]. �

2.3. Proof of Theorem 2.4. Let the notation be as in Theorem 2.4. By
derived and nil-invariance of Borel–Moore homology, we may replace all
derived stacks by their reduced classical truncations. Since X has affine
stabilizers, it admits a stratification by global quotient stacks (see [HR,
Prop. 2.6]), so again using the localization triangle we may assume that
X = [X/G], where X is a reduced quasi-affine scheme of finite type over k
and G = GLn, n ⩾ 0. Using Theorem 1.25, we may replace G by its maximal
subtorus G×n

m and thereby assume G is a split torus. (Note that the condition
on Σ is clearly preserved under this change of notation.)

By Proposition 2.11, there is a nonempty G-invariant affine open U of X
and a diagonalizable subgroup H of G such that [U/G] ≃ Y ×BH with Y
an affine scheme. By noetherian induction and the localization triangle, we
may replace X by U , and then further replace X by Y and G by H so that
X =X ×BG. (Again, note that the condition on Σ is preserved.)

We can assume X is nonempty, so that by condition (L) there exists a
geometric point x of X and an invertible sheaf L ∈ Pic(X) such that
L ∣BGk(x) is trivial. It is enough to show that c = c1(L ) is nilpotent as an
element of the ring π0C●(X)⟨∗⟩.

Since G is diagonalizable, we may write L = Lm∣X ⊗mOBG∣X where m is a
character of G and Lm is an invertible sheaf on X (see [SGA3, Exp. I, 4.7.3]).

5One could skip the reductions above by simply observing that the argument of loc. cit.
goes through without the locally separatedness assumptions.
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The equality c∣BGk(x) = 0 thus implies that the invertible sheaf L ∣BGk(x) is
trivial, i.e., m = 1 and L ≃ L1∣X. Thus c = c1(L1)∣X. Since X is a scheme,
c1(Lm) is nilpotent (see e.g. [Dég, Prop. 2.1.22(1)]), hence so is c.

Remark 2.12. One can always find a finite subset Σ0 ⊆ Σ such that the
conclusion of Theorem 2.4 still holds. Indeed, note that after the reductions
we only need a single element of Σ, and in each reduction step we only need
to use finitely many more elements.

2.4. Proof of Theorem 2.10. After the same reductions as in the proof of
Theorem 2.4, we reduce to the case where X =X ×BG with X a (nonempty)
reduced quasi-affine scheme and G a diagonalizable group scheme. By
condition (K), there exists a geometric point x of X and a class α ∈ Σ
with α∣BGk(x) trivial, where Gk(x) ≃ AutX(x) is the base change of G to
the residue field k(x). It is enough to show that α is nilpotent as an
element of K0(X). If N denotes the group of characters of G, then we have
K0(X) ≃ K0(X)⊗Z Z[N] (see [SGA3, Exp. I, 4.7.3], as in [Tho2, Lem 4.14]).
Thus we may write α = ∑i ai ⊗ bi, where ai ∈ K0(X) and bi are pairwise
distinct elements of N . Restricting α along BGk(x) → X and identifying
K0(BGk(x)) ≃ Z[N], we get ∑i rk(ai) ⋅ bi = 0 in Z[N], and hence rk(ai) = 0
for all i. Thus by [SGA6, Exp. VI, Prop. 6.1], ai are all nilpotent as elements
of K0(X). In particular, α is also nilpotent as claimed.

2.5. The equivariant master theorem. We formulate a G-equivariant
version of condition (L):

Definition 2.13. Let G be an fppf group algebraic space over k acting on
X ∈ dStkk, and Σ ⊆ Pic(BG) a subset. We introduce the following condition
on Σ:

(LG) For every geometric point of X there exists a rank one G-representation
L (x) ∈ Σ such that the StGX(x)-representation L (x)∣BStGX(x) is trivial.

Here StGX(x) is the G-stabilizer at the point x (see Definition A.4).

Specializing Theorem 2.4 to the case of quotient stacks yields the following
equivariant version of the master theorem. As in Notation 2.1, (−)Σ-loc
denotes (−)⟨∗⟩[c1(Σ−1)].

Corollary 2.14. Let S ∈ dStkk and G an fppf group algebraic space over k
acting on a 1-Artin X ∈ dStkS with affine stabilizers. Let Σ ⊆ Pic(BG) be a
subset which satisfies condition (LG) for X. Then we have

CBM
● ([X/G]/S)Σ-loc = 0

and in particular CBM,G
● (X)Σ-loc = 0.

Proof. Apply Theorem 2.4 to the quotient stack X = [X/G] (with Σ ⊆ Pic(X)

the inverse image of Σ along X = [X/G] → BG). Since there is a commutative
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square
BAutX(x) BStGX(x)

X BG,

triviality of a line bundle over BStGX(x) implies triviality over BAutX(x). �

Corollary 2.15. Let G be an fppf group algebraic space over k. Let S ∈ dStkk
and i ∶ Z →X a G-equivariant closed immersion over S where Z,X ∈ dStkS
are quasi-compact 1-Artin with affine stabilizers. Let Σ ⊆ Pic(BG) be a
subset which satisfies condition (LG) for X ∖Z. Then the direct image map

i∗ ∶ CBM
● ([Z/G]/S)Σ-loc → CBM

● ([X/G]/S)Σ-loc

is invertible.

We similarly have an equivariant version of conditions (K):
Variant 2.16. Let G act on X ∈ dStkk and Σ ⊆ R(G) ≃ K0(BG) a subset.

(KG) For every geometric point x of X we have
K0(BStGX(x))[Σ−1

] = 0.

For Λ rational, we may then specialize Theorem 2.10 to the equivariant case
as above.

2.6. Base change.
Lemma 2.17. Let X,X′ ∈ dStkk be 1-Artin and let f ∶ X′ → X be a morphism.
Let Σ ⊆ Pic(X) be a subset and denote by Σ′ ⊆ π0C●(X′)⟨∗⟩ its image by f∗.
If Σ satisfies condition (L) for X, then Σ′ satisfies condition (L) for X′.

Proof. Let x′ be a geometric point of X′ and consider its image x = f(x)
in X. By assumption, there exists an invertible sheaf L (x) ∈ Σ with
c1(L (x))∣BAutX(x) = 0. Then its inverse image L (x′) ∶= f∗L (x) belongs to
Σ′. Since there is a morphism of group schemes AutX′(x′) → AutX(x), we
also have c1(L (x′))∣BAutX′(x′) = 0. �

Corollary 2.18. Let G be an fppf group algebraic space over k acting on
X,X ′ ∈ dStkk which are 1-Artin and let f ∶ X ′ → X be a G-equivariant
morphism. If Σ ⊆ Pic(BG) satisfies condition (LG) for X, then it also
satisfies condition (LG) for X ′.

Combining this with equivariant concentration (Theorem 2.15) yields:
Corollary 2.19. Let G be an fppf group algebraic space over k. Let S ∈ dStkk,
Z,X ∈ dStkS quasi-compact 1-Artin with affine stabilizers, and i ∶ Z →X a
G-equivariant closed immersion over S. Let Σ ⊆ Pic(BG) be a subset which
satisfies condition (LG) for X ∖ Z. Then for every morphism f ∶ X ′ → X,
direct image along the base change i′ ∶ Z ′ = Z ×X X

′ → X ′ induces an
isomorphism

i′∗ ∶ CBM,G
● (Z ′

)Σ-loc → CBM,G
● (X ′

)Σ-loc.
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Construction 2.20. Let G be an fppf group algebraic space over k, acting
on a finite type 1-Artin X ∈ Stkk with affine stabilizers. Suppose we are
given a G-equivariant morphism π ∶X →M to a finite type algebraic space
M ∈ Stkk. Denote by MG the fixed locus of M (see Proposition A.23), and
form the cartesian square

MG ×M X X

MG M.

π

Corollary 2.21. Let the notation be as in Construction 2.20. For any
subset Σ ⊆ Pic(BG), condition (LG) for M ∖MG implies condition (LG) for
X ∖ (MG ×M X). In particular, the direct image map

i∗ ∶ CBM,G
● (MG

×
M
X)Σ-loc → CBM,G

● (X)Σ-loc

is invertible.

Remark 2.22. For example, if G = T is diagonalizable then we may take Σ
to be the set of nontrivial rank one representations L ∈ Pic(BT ). Compare
[Jos, Prop. 6.9] for G-theory of smooth Deligne–Mumford stacks with torus
action over an algebraically closed field.

Remark 2.23. For example, if X has finite inertia (e.g. it is separated
and Deligne–Mumford) then it admits a coarse moduli space M that is of
finite type [KM]. Moreover, the G-action automatically descends to M by
universal properties, in such a way that π ∶X →M is equivariant. Similarly,
if X admits a good or adequate moduli space π ∶X →M in the sense of Alper
[Alp1, Alp2] and is of finite type, then M is of finite type [Alp2, Thm. 6.3.3].

2.7. Non-quasi-compact stacks. Let X be a derived 1-Artin stack which
has affine stabilizers but is only locally of finite type over k, and let Σ ⊆ Pic(X).
Unfortunately, concentration in the form of Theorem 2.4 does not hold for
such X: we may have

CBM
● (X)loc ≠ 0

even when Σ satisfies condition (L) for X. In fact, we have simple counterex-
amples to Theorem 3.1 even for torus actions (and there are only finitely
many T -stabilizer groups appearing).

Example 2.24. For every integer n ⩾ 0, consider the weight 1 scaling action
of T = Gm on Xn = An∖0 and the element αn = t ⋅ [Xn] ∈ CBM,T

● (Xn)⟨−n+1⟩,
where t is the first Chern class of the tautological line bundle on BT . Note
that we have ti ⋅ (αn) = 0 if and only if i ⩾ n − 1. Therefore, if X = ∐nXn,
the element

α = (αn)n ∈ ĤBM,T
∗ (X)Q

does not vanish after inverting t (see (0.1) for notation). Similarly, consider
Y = ∐nXn ×Wn where Wn is smooth 1-Artin of finite type over k, of pure
dimension −n with trivial T -action. Then βn = t ⋅ [Xn ×Wn] ∈ CBM,T

● (Xn ×

Wn)⟨1⟩, and the element

β = (βn)n ∈ HBM,T
∗ (Y )Q
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does not vanish after inverting t.

In this subsection we give a definition of “localized Borel–Moore homology”
CBM
● (X)loc

which is the same as the localization of Borel–Moore homology when X is
quasi-compact, but for which CBM

● (X)loc = 0 still holds under condition (L).
If we write X as a filtered union of quasi-compact opens {Xα}α, then we will
see CBM

● (X)loc ≃ lim
←Ðα

CBM
● (Xα)loc.

Definition 2.25. Let S ∈ dStkk, X ∈ dStkS , and Σ ⊆ Pic(X). We define

CBM
● (X/S)loc ∶= CBM

● (X/S)Σ-loc ∶= lim
←Ð
X′⊆X

CBM
● (X′

/S)⟨∗⟩[c1(Σ−1
)]

where the homotopy limit is taken over quasi-compact opens X′ ⊆ X (with
restriction maps as the transition arrows).

Since condition (L) is stable under restriction to opens, the following non-
quasi-compact generalization of Theorem 2.4 is immediate from the definition:

Theorem 2.26. Let S ∈ dStkk, X ∈ dStkS which is 1-Artin with affine
stabilizers, and Σ ⊆ Pic(X). If Σ satisfies condition (L) for X, then we have

CBM
● (X/S)loc = 0.

We next note that this definition is compatible with Notation 2.1.

Proposition 2.27. Let S ∈ dStkk, X ∈ dStkS, and Σ ⊆ Pic(X). If X is
a filtered union of quasi-compact opens {Xα}α, then there is a canonical
isomorphism

CBM
● (X/S)loc ≃ lim

←Ð
α

CBM
● (Xα/S)loc.

Proof. Consider the following commutative square:

lim
←ÐX′

CBM
● (X′)⟨∗⟩[Σ−1] lim

←Ðα
CBM
● (Xα)⟨∗⟩[Σ−1]

lim
←ÐX′

lim
←Ðα

CBM
● (Xα ∩X′)⟨∗⟩[Σ−1] lim

←Ðα
lim
←ÐX′

CBM
● (Xα ∩X′)⟨∗⟩[Σ−1]

where we omit the “/S” from the notation for simplicity. The upper horizontal
arrow comes from the fact that each Xα is quasi-compact. The vertical arrows
are induced by restriction. The right-hand one is invertible because Xα ↪ X

is cofinal in {X ∩ Xα ↪ X}α. The left-hand one is invertible because X′ is
quasi-compact: we may choose a finite subset of opens in (Xα ∩X′)α which
cover X′, and then by filteredness there exists some large enough index β
such that Xβ ∩X′ = X′. �

Corollary 2.28. Let S ∈ dStkk, X ∈ dStkS, and Σ ⊆ Pic(X). If X is quasi-
compact then there is a canonical isomorphism

CBM
● (X/S)loc ≃ CBM

● (X/S)⟨∗⟩[c1(Σ)
−1

].
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Note also that CBM
● (−)loc still satisfies the localization triangle:

Proposition 2.29. Let S ∈ dStkk, X ∈ dStkS, and Σ ⊆ Pic(X). Then for
every closed immersion i ∶ Z↪ X with open complement j ∶ U↪ X, we have a
canonical exact triangle

CBM
● (Z/S)loc

i∗
Ð→ CBM

● (X/S)loc
j!

Ð→ CBM
● (U/S)loc.

Proof. Write X as a filtered union of quasi-compact opens {Xα}α (e.g. take
the partially ordered set of all quasi-compact opens). For each α we have
the localization triangle
CBM
● (Z ∩Xα/S)⟨∗⟩[Σ−1

] → CBM
● (Xα/S)⟨∗⟩[Σ−1

] → CBM
● (U ∩Xα/S)⟨∗⟩[Σ−1

]

since localization preserves exact triangles (as an exact functor). Passing
to the homotopy limit (which is also exact) thus yields the claim by Corol-
lary 2.27. �

As before we may now specialize to the equivariant case. Let S ∈ dStkk, G
be an fppf group algebraic space over k which acts on a 1-Artin X ∈ dStkS
with affine stabilizers, and Σ ⊆ Pic(BG) a subset. We have

CBM
● ([X/G]/S)loc = lim

←Ð
X′⊆X

CBM
● ([X ′

/G]/S)⟨∗⟩[c1(Σ)
−1

]

where the limit is taken over quasi-compact G-invariant opens X ′ ⊆X. We
get the following non-quasi-compact version of Corollary 2.14:
Corollary 2.30. If Σ ⊆ Pic(BG) satisfies condition (LG) for X, then we
have

CBM
● ([X/G]/S)Σ-loc = 0.

For D rational, we have a parallel version of the above story for any Σ ⊆

K0(X), so that we get a non-quasi-compact version of Theorem 2.10 under
condition (L).

3. Torus concentration

In this section we fix a split torus T over k, and we assume that k is noetherian
with no nontrivial idempotents.

3.1. The statement.
Theorem 3.1. Let T act on a 1-Artin X ∈ dStkk. Let Z ⊆ X be a T -
invariant closed substack such that for every point x of the complement
X ∖Z, StTX(x) is properly contained in Tk(x). Then we have:

(i) Direct image along the closed immersion i ∶ Z → X induces an
isomorphism

i∗ ∶ CBM,T
● (Z)Σ-loc → CBM,T

● (X)Σ-loc

of C●(BT )Σ-loc-modules, where Σ ⊆ Pic(BT ) is the set of nontrivial
line bundles on BT .
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(ii) If X is quasi-compact then there exists a finite subset Σ0 ⊆ Σ such
that we may replace Σ by Σ0 in claim (i).

Remark 3.2. In Theorem 3.1 the condition that StTX(x) ⊊ Tk(x) is equivalent
to the condition that dim(StTX(x)) < dim(Tk(x)), since Tk(x) is irreducible.

Remark 3.3. Given a subgroup H ⊊ T , consider the (diagonalizable) quo-
tient K = T /H. Choose a nontrivial character of K, corresponding to a
one-dimensional representation of K. The T -representation obtained by
restriction may be regarded as a line bundle L on BT whose restriction
L ∣BH is trivial.

Example 3.4. Suppose that the fixed locus XT (Definition A.11) is empty,
i.e., for every geometric point x of X the T -stabilizer StTX(x) is not equal
to Tk(x). Consider the set G of subgroups H ⊆ T for which there exists a
geometric point x of X such that the T -stabilizer StTX(x) is equal to the base
change Hk(x). For every H ∈ G let L (H) be a nontrivial line bundle on BT
such that L (H)∣BH is trivial (as in Remark 3.3). Then Σ0 = {L (H)}H∈G

satisfies condition (LT ) for X.

Proposition 3.5. Let T act on a quasi-compact 1-Artin X ∈ dStkk. Then
there exists a nonempty T -invariant open of X whose T -stabilizers are con-
stant. In particular, the set G (Example 3.4) is finite.

Proof. Note first of all that the second statement follows from the first by
noetherian induction.

For the main statement, we may as well assume that X is reduced (since the
statement only involves geometric points). For X an algebraic space, the
statement follows immediately from Proposition 2.11. In general we argue as
follows. By [SP, Tag 06QJ] and generic flatness of the morphism [IX/T ] →

[X/T ] (quotient of the projection IX → X), there exists a nonempty T -
invariant open X0 ⊆X such that X0 is a gerbe (with respect to a flat finitely
presented group algebraic space) over an algebraic space. Note also that this
algebraic space is locally of finite type over k (since X is locally a trivial
gerbe over it), hence of finite type over k since it is quasi-compact (because
X is). Replacing X by X0 we may therefore assume that X is a gerbe over
an algebraic space M of finite type over k.

The T -action on X descends along π ∶ X →M , for example because it is a
coarse moduli space. By the algebraic space case, it will suffice to show that
π ∶X →M is T -stabilizer-preserving, i.e., for every geometric point x of X
the canonical morphism

StTX(x) → StTM(π(x))

is invertible. Since this is a homomorphism of subgroups of Tk(x), it is enough
to show surjectivity. A geometric point of StTM(π(x)) is a geometric point
t of T such that t ⋅ π(x) = π(x). But this means precisely that there is an
identification t ⋅ x ≃ x as geometric points of X, since on geometric points π
exhibits M as the set of connected components of X. �
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Proof of Theorem 3.1. Let Σ0 ⊆ Σ be as in Example 3.4; when X is quasi-
compact this is finite by Proposition 3.5. Thus it will suffice to show that
i∗ becomes invertible after inverting c1(Σ0). By construction, Σ0 satisfies
condition (LT ) for X ∖Z, so the claim follows directly from Corollary 2.30
at least when X has affine stabilizers.

Otherwise, by the localization triangle we may replace X with X ∖Z and
thereby reduce to showing that CBM,T

● (X)loc = 0 when Σ0 satisfies condi-
tion (LT ) for X. As in the proof of Proposition 3.5, using the localization
triangle again, we may assume that there exists a T -equivariant stabilizer-
preserving morphism π ∶ X → M which exhibits X as a gerbe over an
algebraic space M of finite type over k. Then Σ0 satisfies condition (LT )
for M as it does for X and π is a surjection on geometric points. Since M
is an algebraic space, it follows from Proposition 2.11 that there exists a
nonempty T -invariant affine open U of M and an invertible sheaf L ∈ Σ0
such that c1(L ) is nilpotent as an element of the ring π0C●

T (U)⟨∗⟩ (see proof
of Theorem 2.4). Therefore V = π−1(U) is a nonempty T -invariant open in
X such that c1(L ) is nilpotent in π0C●

T (V )⟨∗⟩. In particular

CBM,T
● (V )⟨∗⟩[c1(L )

−1
] = 0

as it is a module over C●
T (V )⟨∗⟩[c1(L )−1] = 0. The claim now follows by

noetherian induction using the localization triangle. �

3.2. Example: fixed loci. In Appendix A we define a T -fixed locus XT ⊆

X (Definition A.11). In terms of XT , the condition in Theorem 3.1 is
that the open complement X ∖ Z is contained in X ∖XT . Although the
substack XT ⊆X is not, a priori, closed in general (see Question A.14), we
obtain the following variants of concentration using the reduced fixed locus
(Definition A.16) or homotopy fixed point stack (Definition A.17) when X
has finite stabilizers or is Deligne–Mumford, respectively.

Corollary 3.6. Let the notation be as in Theorem 3.1 and suppose X has
finite stabilizers. Denote by XT

red the reduced T -fixed locus (Definition A.16).
Then direct image along the closed immersion i ∶XT

red →X (Proposition A.15)
induces an isomorphism

i∗ ∶ CBM,T
● (XT

red)Σ-loc → CBM,T
● (X)Σ-loc

of C●(BT )Σ-loc-modules.

In the Deligne–Mumford case we can alternatively use the homotopy fixed
point stack.

Corollary 3.7. Let the notation be as in Theorem 3.1 and suppose X ∈ dStkk
is quasi-compact Deligne–Mumford. Choose a reparametrization T ′↠ T as in
Corollary A.49 and denote by XhT ′ the homotopy fixed point stack with respect
to the induced T ′-action (Definition A.17). Then direct image along the closed
immersion ε ∶XhT ′ →X (Proposition A.27) induces an isomorphism

ε∗ ∶ CBM,T
● (XhT ′

)Σ-loc → CBM,T
● (X)Σ-loc

of C●(BT )Σ-loc-modules.
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3.3. Example: vector bundles and abelian cones. For future use we
record the following example:

Proposition 3.8. Let X ∈ dStkk be 1-Artin with finite stabilizers. Let
E ∈ CohT (X) ≃ Coh(X ×BT ) be a T -equivariant coherent sheaf on X. Write
E = VX(E ) for the associated cone over X with T -action, and E ∖X for the
complement of the zero section. If E has no fixed part, i.e., E fix ≃ 0, then for
every point v of E, we have StTE(v) = Tk(v) if and only v belongs to the zero
section.

Proof. Suppose first that X is the spectrum of a field. Since T acts trivially
on X, the T -representation E splits as a direct sum of 1-dimensional repre-
sentations. Since E has no fixed part, the latter have nonzero weights, so
the claim is clear in this case.

Now consider the general case, i.e., X is 1-Artin with finite stabilizers. Let v
be a field-valued point of E. It is clear that if v belongs to the image of the
zero section then it has StTE(v) = Tk(v). Conversely, suppose that v ∈ E ∖X.
To show that the inclusion StTE(v) ⊆ Tk(v) is proper it will suffice to show
that dim(StTE(v)) < dim(Tk(v)) (since the scheme Tk(v) is irreducible). Note
that E also has finite stabilizers, since it is affine over X. By the short exact
sequence of group schemes over k(v) (A.5)

1→ AutE(v) → AutE(v) → StTE(v) → 1,

where E = [E/T ] is the quotient, it will moreover suffice to show that
dim(AutE(v)) < dim(Tk(v)).

Let x denote the projection of v in X, Ex the fibre of E over x, and
Ex = [Ex/T ] the quotient. We have another short exact sequence

1→ AutEx(v) → AutE(v) → AutX(x),

by applying Remark A.1 twice, to the representable morphism Ex → E and to
the morphism E→X ×BT →X. By the special case of our claim where the
base X is Spec(k(x)), we have dim(AutEx(v)) < dim(Tk(v)). Since AutX(x)
is finite, it follows that dim(AutU(v)) < dim(Tk(v)) as claimed. �

By Theorem 3.1 we get:

Corollary 3.9. Let the notation be as in Proposition 3.8. Let Σ ⊆ Pic(BT )

be the subset of nontrivial line bundles. Then Σ satisfies condition (LT ) for
E ∖X.

Corollary 3.10. Let S ∈ dStkk, X ∈ dStkS with finite stabilizers. Let E
be a T -equivariant connective coherent complex on X with no fixed part,
i.e., E ∈ Dcoh(X × BT )⩽0 with E fix ≃ 0, and write E = VX(E ). Then
direct image along the zero section 0 ∶ X → E induces an isomorphism of
C●(BT )Σ-loc-modules

0∗ ∶ CBM
● (X ×BT /S)Σ-loc → CBM

● ([E/T ]/S)Σ-loc, (3.11)

where Σ is as in Corollary 3.9.
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Proof. By derived invariance, we may assume that X is classical and E is
0-truncated (i.e., a coherent sheaf). Now the claim follows from Corollary 3.9
and Corollary 2.15. �

3.4. Counterexample with infinite stabilizers. We warn the reader
that the finite stabilizers assumption in Corollary 3.10 is necessary, as we
can already see in the “simplest” example of an Artin stack with infinite
stabilizers, i.e. BGm. Indeed, even the conclusion of Proposition 3.8 does
not hold in this example.

Example 3.12. Let Z = BGm, X = [A1/Gm], and i ∶ Z → X the closed
immersion induced by 0 ∶ Spec(k) →A1. Let T = Gm act on X with weight
1, so that i is T -equivariant and induces a closed immersion

[Z/T ] ≃ BGm ×BT → [A1
/Gm × T ] ≃ [X/T ].

Then the induced direct image map
CBM,T
● (BGm)loc → CBM,T

● ([A1
/Gm])loc

is not an isomorphism.

4. Equivariant concentration via stabilizer rank

In Sect. 2 we proved an abstract concentration theorem for the inclusion of a
G-invariant closed substack (Corollary 2.15). Unlike the case of torus actions
(Proposition 3.6), this need not apply to the inclusion of the fixed locus in
the case of G a general algebraic group (see Example 4.13). In this section we
will demonstrate one way of getting around this problem. Roughly speaking,
the idea is to replace the G-locus by the locus of points whose G-stabilizer is
of reductive rank equal to that of G. Recall that the reductive rank is equal
to the rank of any maximal subtorus.

In this section, the base ring k is assumed noetherian.

4.1. Rank functions for algebraic groups. We begin with some general
considerations about “rank functions” for algebraic groups.

Notation 4.1. Let G an fppf affine group scheme over k. Given a geometric
point x of Spec(k), denote by SubG(x) denote the set of subgroups of
Gk(x) = G×k k(x). Denote by SubG the union of the set {G} and the sets
SubG(x) over x.

Definition 4.2. Let Γ ⊆ SubG be a subset. A rank function for G, defined
on Γ and valued in a totally ordered set V , is a function r ∶ Γ ∪ {G} → V .

(i) We say that r is admissible if for every H ∈ Γ with r(H) < r(G), the
restriction homomorphism X(G) →X(H) is not injective (where X(G)

and X(H) are the character groups of G and H, respectively).
(ii) Given a subset Σ ⊆ R(G), we say that r is Σ-admissible if for every

H ∈ Γ with r(H) < r(G), the kernel of R(G) → R(H) contains some
element of Σ.



34 D. ARANHA, A. A. KHAN, A. LATYNTSEV, H. PARK, AND C. RAVI

Remark 4.3. If r is admissible, then it is Σ-admissible if Σ contains the
elements λ−1(L ) = 1 − [L ] for all nontrivial line bundles L ∈ Pic(BG).

Example 4.4. Let G be an fppf affine group scheme over k. The character
rank of G is the rank of its character group X(G), i.e., the dimension of the
Q-vector space X(G) ⊗Z Q. This defines a rank function for G.

Example 4.5. Let G be an fppf affine group scheme over k. The represen-
tation rank of G is the transcendence degree6 of the Q-algebra R(G)Q. This
defines a rank function for G.

Lemma 4.6. Suppose k is a field and let G be an algebraic group over k.

(i) If G is connected reductive, or k is of characteristic zero, then the
representation rank of G is finite.

(ii) If G is connected reductive, or k is of characteristic zero and G is
connected, then the representation rank of G agrees with its reductive
rank (in the sense of [SGA3, Exp. X, Rem. 8.7]).

Proof. First note that ifG = T is a torus of rank r, then R(T )Q ≃ Q[t±1
1 , . . . , t±1

r ]

is of transcendence degree r. For G connected reductive, restriction to a
maximal subtorus T ⊆ G induces an isomorphism R(G)Q ≃ R(T )WQ by [Ser,
Thm. 4], where W denotes the Weyl group. Since W is a finite group,
it follows that the restriction morphism R(G)Q → R(T )Q is finite, and
hence trdeg(R(G)Q) = trdeg(R(T )Q). By above, the latter is equal to the
reductive rank of G.

Assume k is of characteristic zero and G is an arbitrary algebraic group over k.
Then R(G) is a finite type Z-algebra by [CG, 5.2.1], so the representation rank
is finite. If G is connected then we may choose a Levi decomposition G ≃H.U ,
where U is the unipotent radical and H ⊆ G is connected reductive (see [Bor2,
11.22]). By [CG, 5.2.18], the restriction homomorphism R(G) → R(H) is
bijective, so the representation rank of G is equal to that of H. The reductive
rank of G is also equal to that of G/U ≃H. Thus it follows from the connected
reductive case that the representation rank is equal to the reductive rank. �

Lemma 4.7. Let G be an fppf affine group scheme over k.

(i) The character rank is admissible if G is diagonalizable. Moreover, it
is invariant under base change in k.

(ii) The character rank is admissible if k is an algebraically closed field.
(iii) Let Σ ⊆ R(G) be the subset of nonzero elements. Then the represen-

tation rank is Σ-admissible if k is an algebraically closed field.

Proof. (i): Follows from e.g. [SGA3, Exp. IX, Rem. 1.4.1].

6Recall that for a Q-algebra A, not necessarily of finite type, the transcendence degree
is defined as the supremum of the cardinalities of all subsets of algebraically independent
elements of A.
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(ii): SupposeH ⊆ G is a subgroup that is of strictly lesser character rank. This
means that there exists some nontrivial character χ of G whose restriction to
H is trivial. Then the tautological line bundle γ on BGm pulls back along
Bχ ∶ BG→ BGm to a nontrivial line bundle on BG whose restriction to BH
is trivial.

(iii): If H ⊆ G is a subgroup such that R(G) → R(H) is injective, then we
have trdeg(R(H)Q) ⩾ trdeg(R(G)Q) from the definitions. �

4.2. Condition (LG) via ranks of stabilizers.

Proposition 4.8. Let G an fppf affine group scheme over k and Σ ⊆ Pic(BG)

the subset of nontrivial line bundles on BG. Let X be a G-equivariant derived
Artin stack with affine stabilizers. Let r be an admissible rank function defined
on a subset Γ ⊆ SubG containing the G-stabilizer StGk(x) for every geometric
point x of X. If for every geometric point x of X we have r(StGX(x)) < r(G),
then Σ satisfies condition (LG) for X.

Proof. Suppose that x is a geometric point such that r(StGX(x)) < r(G). Since
r is admissible, the restriction map X(G) →X(H) contains some nontrivial
character χ. Then Bχ∗(γ), where γ is the tautological line bundle on BGm

and Bχ ∶ BG→ BGm is the induced morphism, is a nontrivial line bundle
on BG whose restriction to BH is trivial. This shows condition (LG). �

Combining Proposition 4.8 with Lemma 4.7, we get the following examples:

Corollary 4.9. Let T be a split torus over k acting on a 1-Artin X ∈ dStkk
such that for every geometric point x of X, the T -stabilizer StTX(x) ⊊ T is a
proper subgroup. Then the subset Σ ⊆ Pic(BT ) of nontrivial line bundles on
BT satisfies condition (LT ) for X.

Corollary 4.10. Let G be an affine algebraic group over an algebraically
closed field k acting on a 1-Artin X ∈ dStkk such that for every k-rational
point x of X, the G-stabilizer StGX(x) is of character rank strictly less than
that of G. Then the subset Σ ⊆ Pic(BG) of nontrivial line bundles on BG
satisfies condition (LG) for X.

If Σ is instead a subset of R(G), we similarly have:

Proposition 4.11. Let G an fppf affine group scheme over k acting on a
1-Artin X ∈ dStkk. Let Σ ⊆ R(G) be a subset and r a Σ-admissible rank
function defined on a subset Γ ⊆ SubG containing the G-stabilizer StGk(x) for
every geometric point x of X. If for every geometric point x of X we have
r(StGX(x)) < r(G), then Σ satisfies condition (KG) for X.

Corollary 4.12. Let G be an affine algebraic group over an algebraically
closed field k acting on a 1-Artin X ∈ dStkk such that for every k-rational
point x of X, the G-stabilizer StGX(x) is of representation rank strictly less
than that of G. Then the subset Σ ⊆ R(G) of nonzero elements satisfies
condition (KG) for X.
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4.3. Counterexample: fixed loci. Unlike the torus case (Subsect. 3.2),
the G-fixed locus does not usually satisfy condition (LG) (even for schemes).
Indeed, we show that concentration does not even hold in this setting:

Example 4.13. Let k be a field and let G = SL2,k. Consider the three-
dimensional irreducible G-representation V . Let X be the total space of
V regarded as a k-scheme with G-action. Then the G-fixed locus XG

(Definition A.11) is the origin and the direct image map
0∗ ∶ π0CBM,G

● (Spec(k))Q⟨∗⟩ → π0CBM,G
● (X)Q⟨∗⟩

is zero. However, the source
π0 CBM,G

(Spec(k))Q⟨∗⟩ ≃ π0C●
(BG)Q⟨∗⟩ ≃ Q[t2],

is a nonzero integral domain (where t2 is the top Chern class of the standard
2-dimensional representation of G). Thus the localization of 0∗ is not an
isomorphism.

5. Localization and integration formulas

For this section we assume the base ring k is noetherian with no nontrivial
idempotents. We fix a split torus T over k.

Given a derived Artin stack with T -action, we will denote the quotient stack
in script font (e.g. X = [X/T ], Y = [Y /T ], etc.). If T acts on X, we write

C●
T (X)loc ∶= C●

(X)loc ∶= C●
(X)⟨∗⟩[c1(Σ)

−1
]

where Σ is the set of nontrivial line bundles on BT . Similarly, we write
CBM,T
● (X/Y )loc ∶= CBM

● (X/Y)loc ∶= CBM
● (X/Y) ⊗C●(BT ) C●

(BT )loc

for any T -equivariant morphism X → Y , and more generally
CBM
● (X/S)loc ∶= CBM

● (X/S) ⊗C●(X) C●
(X)loc

when X → S is a locally of finite type morphism which is T -equivariant with
respect to the trivial action on S.

5.1. Fixed and moving parts of complexes. Let X be a derived stack
over k. Let G be a diagonalizable group scheme of finite type over k. Recall
the following standard ∞-categorical version of [SGA3, Exp. I, 4.7.3]:

Proposition 5.1. There is a canonical equivalence of stable ∞-categories
Dqc(X ×BG) →∏

χ

Dqc(X),

where the product is taken over characters χ ∶ G→Gm.

More generally, let G be an fppf group scheme acting trivially on X. Then
Čech descent along the cover X ↠ [X/G] ≃ X × BG yields a canonical
equivalence between Dqc(X × BG) and the ∞-category of quasi-coherent
OGX -comodules, where GX = G ×X. Now suppose that G is diagonalizable,
so that OTX ≃ OX[M] is the group algebra of an abelian group M (= the
group of characters of G). In this case one can argue as in the proof of [Mou,
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Prop. 4.2] to show that the ∞-category of quasi-coherent OGX -comodules is
equivalent to the ∞-category

Fun(M,Dqc(X)) ≃ ∏
χ∈M

Dqc(X),

where M is regarded as a discrete set.

Given a quasi-coherent complex F ∈ Dqc(X × BG), write F (χ) for the
χ-eigenspace (χ ∈M), so that there are canonical isomorphisms

⊕
χ

F (χ)
→F ,

F →∏
χ

F (χ).

Indeed, the equivalence F of Proposition 5.1 admits left and right adjoints
FL and FR, respectively, and these isomorphisms are the counit of (FL, F )

and unit of (F,FR), respectively.

Definition 5.2. The fixed part of F ∈ Dqc(X × BG) is its weight zero
eigenspace and its moving part is the direct sum of its nonzero weight
eigenspaces. We write

F fix
∶= F (0), Fmov

∶= ⊕
χ≠0

F (χ).

5.2. Euler classes. In this subsection we define Euler classes of certain
2-term perfect complexes (Construction 5.9), using a generalized homotopy
invariance property (Theorem 5.6).

Recall the following self-intersection formula:

Proposition 5.3. Let X ∈ dStkk and E a locally free sheaf of rank r on X.
Let E = V(E ) denote the total space and 0 ∶X → E the zero section. Then
the Euler class e(E ) ∈ C●(X) is canonically identified with the image of the
unit 1 ∈ C●(X) by the composite

CBM
● (X/X)

0∗
Ð→ CBM

● (E/X)
0!
Ð→ CBM

● (X/X)⟨r⟩ (5.4)

under the isomorphism C●(X) ≃ CBM
● (X/X).

Proof. See [Kha2, Cor. 3.17]. �

Proposition 5.5. Let S ∈ dStkk, X ∈ dStkS which is 1-Artin with finite
stabilizers. Let E be a locally free sheaf of rank r on X ×BT with no fixed
part, i.e., E fix ≃ 0. Then we have:

(i) The Euler class e(E ) ∈ C●(X) is invertible in C●(X)loc.
(ii) Let π ∶ E = V(E ) → X be the projection of the total space and 0 ∶ X→ E

the zero section. Then we have a canonical homotopy

π!
≃ 0∗(− ∩ e(E )

−1
)

of maps CBM
● (X/S)loc → CBM

● (E/S)loc.
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Proof.

(i) By Proposition 5.3 it suffices to show that both maps in (5.4) become
invertible after localization. But 0! is an isomorphism by homotopy
invariance (even before localization) and 0∗ becomes an isomorphism
by Corollary 3.10.

(ii) From the formula

0E,∗0!
E = (−) ∩ e(π∗E(E ))

we get
0E,∗ = π!

E(− ∩ e(E ))

by applying π!
E on the right.

�

To define Euler classes for 2-term complexes, we will need the following
generalized homotopy invariance property:

Theorem 5.6. Let S ∈ dStkk, and X ∈ dStkS which is 1-Artin with finite
stabilizers. Regard X with trivial T -action. Let E ∈ DT,⩾−1

perf (X) be a T -
equivariant perfect complex whose fixed part E fix belongs to DT,⩾0

perf (X). Let
E = VX(E ) be the total space and π ∶ E → X be the projection. Then π is
quasi-smooth and the Gysin pull-back induces an isomorphism

π!
∶ CBM,T

● (X/S)loc → CBM,T
● (E/S)loc

of C●
T (X)loc-modules.

Proof. Using the localization triangle and stratifying X by global quotient
stacks, we may assume that X has the resolution property.

Note that π ∶ E →X factors through πmov ∶ Emov →X and E → Emov, which
is a torsor under the vector bundle stack πfix ∶ Efix → X. By homotopy
invariance for vector bundle stacks [Kha2, Prop. 2.20], we may therefore
replace E by E mov and assume that E has no fixed part.

Since X has the resolution property, we may argue as in the proof of [Kha2,
Prop. A.10] by induction on the Tor-amplitude of the perfect complex E to
reduce to the case where

E = Cofib(E −1
→ E 0

) ∈ DT,[−1,0]
perf (X)

with E −1,E 0 ∈ DT,[0,0]
perf (X). In this case we claim that

π!
(−) = 0E,∗(−) ∩ π∗(e(E −1

) ∩ e(E 0
)
−1). (5.7)

Recall that e(E 0) and e(E −1) are invertible by Proposition 5.5 and 0E,∗ is
invertible by Corollary 3.10, so this will imply that π! is invertible.



LOCALIZATION THEOREMS FOR ALGEBRAIC STACKS 39

Let us prove (5.7). Note that the total space E = V(E ) fits in a homotopy
cartesian square

E E0

X E1,

s

π p

0E1

where E0 = V(E 0) and E1 = V(E −1). Recall the formulas

0E0,∗ = π
!
E0(−) ∩ π

∗
E0e(E

0
)

0E1,∗ = π
!
E1(−) ∩ π

∗
E1e(E

−1
)

from Proposition 5.5. The second implies
s∗π

!
= π!

E0(−) ∩ π
∗
E0e(E

−1
)

by applying p! on the left and using the base change formula p!○0E1,∗ ≃ s∗○π
!.

Since s∗ is an isomorphism by Corollary 2.6, (5.7) now follows from the
above identities. �

Notation 5.8. In the situation of Theorem 5.6, we write 0!
T for the homotopy

invariance isomorphism
0!
T ∶ CBM,T

● (E/S)loc → CBM,T
● (X/S)loc,

inverse to π!.

We can now define Euler classes of certain “quasi-smooth cones”:

Construction 5.9. Let S ∈ dStkk and X ∈ dStkS which is 1-Artin with
finite stabilizers. Regard X with trivial T -action. Let E ∈ DT,⩾−1

perf (X) be a
T -equivariant perfect complex whose fixed part E fix belongs to DT,⩾0

perf (X).
Let E = VX(E ) be the total space and let 0 ∶X → E denote the zero section.
The Euler class

e(E ) ∈ C●
T (X)loc = C●

(X)loc

is the image by the C●
T (Spec(k))loc-linear map

CBM
● (X/X)loc

0∗
Ð→ CBM

● (E/X)loc
0!
T
Ð→ CBM

● (X/X)loc (5.10)

of the unit 1 ∈ C●(X)loc, under the isomorphism C●(X)loc ≃ CBM
● (X/X)loc.

Remark 5.11. Let E be as in Construction 5.9 and suppose moreover that it
has no fixed part, i.e., E fix ≃ 0. In this case, the Euler class e(E ) ∈ C●(X)loc is
invertible. Since this is equivalent to invertibility of the map (5.10), we may
use the localization triangle in Borel–Moore homology (and a stratification
by quotient stacks) to reduce to the case where X is classical and admits
the resolution property. Then we may represent E as a bounded complex of
finite rank locally free sheaves E i, in which case e(E ) is the cup product of
e(E i)(−1)i , as in the proof of Theorem 5.6.

Remark 5.12. With notation as in Construction 5.9, let s ∶X → E be any
T -equivariant section. Then we may similarly define the localized Euler class

e(E, s) ∈ C●
T (X)loc
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as the image of 1 by 0!
T ○ s∗ ∶ CBM

● (X/X)loc → CBM
● (E/X)loc. This may also be

regarded as a class in C●
T,Z(X)loc, (localized equivariant) cohomology with

support in the zero locus Z of s.

5.3. Gysin pull-backs.
Definition 5.13. Let f ∶ X → Y be a T -equivariant morphism of derived
Artin stacks over k. Assume that the action on X is trivial. We say that f
is quasi-smooth in weight 0 if the relative cotangent complex LX/Y lies in
DT,⩾−2

perf (X) and has fixed part Lfix
X/Y in DT,⩾−1

perf (X).

Remark 5.14. Let i ∶ Z →X be a closed immersion which is quasi-smooth
in weight 0. Then the conormal complex NZ/X ∶= LZ/X[−1] is as above,
so we can form the Euler class e(NZ/X) ∈ C●

T (Z)loc. When Z has finite
stabilizers and NZ/X has no fixed part, then this is invertible (Remark 5.11).
Example 5.15. Let X ∈ dStkk be quasi-compact Deligne–Mumford with
T -action, and denote by Z =XhT the homotopy fixed point stack. Then the
canonical morphism ε ∶ Z →X is a closed immersion (Proposition A.27) and
NZ/X has no fixed part (Corollary A.36).
Construction 5.16. Let S ∈ dStkk, X,Y ∈ dStkS with T -action, and
f ∶X → Y a T -equivariant morphism. Suppose that X is 1-Artin with finite
stabilizers and f is quasi-smooth in weight 0.

(i) The T -equivariant localized Gysin pull-back
f !
T ∶ CBM

● (Y/S)loc → CBM
● (X/S)loc (5.17)

is defined as follows. Recall that there is a specialization map
spTX/Y ∶ CBM

● (Y/S)loc → CBM
● ([NX/Y /T ]/S)loc.

Then f !
T is the composite

CBM
● (Y/S)loc

spX/Y
ÐÐÐ→ CBM

● ([NX/Y /T ]/S)loc ≃ CBM
● (X/S)loc,

where the isomorphism is Theorem 5.6.
(ii) The T -equivariant fundamental class of X → Y is

[X/Y ]
T
∶= [X/Y] ∶= f !

(1) ∈ CBM,T
● (X/Y )loc (5.18)

where f ! is the Gysin map of Construction 5.16 with S = [Y /T ] and
1 ∈ C●

T (Y )loc.
Remark 5.19. Note that if f is in fact quasi-smooth (not just in weight 0),
then f !

T is just the usual quasi-smooth Gysin pull-back f ! (see [Kha2]) by
definition.

5.4. Functoriality. Fix S ∈ dStkk.
Proposition 5.20. Suppose given a homotopy cartesian square

X ′ Y ′

X Y

f ′

q

f
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of derived Artin stacks locally of finite type over S with T -action, where T
acts trivially on X and X ′, X and X ′ are 1-Artin with finite stabilizers, f
is quasi-smooth in weight 0, and q is quasi-smooth. Then the square

CBM
● (Y/S)loc CBM

● (X/S)loc

CBM
● (Y′

/S)loc CBM
● (X′

/S)loc

f !
T

q! p!

f ′!T

commutes, i.e., there is a canonical homotopy

p!
○ f !

T ≃ f ′!T ○ q
!

of maps CBM
● (Y/S)loc → CBM

● (X′
/S)loc.

Proof. Consider the commutative diagram

CBM
● (Y/S)loc CBM

● (NX/Y/S
)loc CBM

● (X/S)loc

CBM
● (Y′

/S)loc CBM
● (NX′/Y′/S)loc CBM

● (X′
/S)loc

spX/Y

q!

π!

N !
p p!

spX′/Y′ π′!

where Np ∶ NX/Y → NX′/Y′ is the induced morphism, and π ∶ NX/Y → X,
π′ ∶ NX′/Y′ → X′ are the projections. The left-hand square commutes by
Proposition 1.17 and the right-hand square commutes by functoriality of
quasi-smooth Gysin pull-backs [Kha2, Thm. 3.12]. The claim thus follows
by construction of the Gysin maps f !

T and f ′!T . �

Proposition 5.21. Let f ∶X → Y and g ∶ Y → Z be T -equivariant morphisms
of derived 1-Artin stacks locally of finite type over S. Suppose that X has
finite stabilizers and trivial T -action. Assume that f and g ○ f are quasi-
smooth in weight 0, and g is quasi-smooth. Then we have:

(i) There is a canonical identification

[X/Z]
T
≃ [X/Y ]

T
○ [Y /Z]

T
∈ CBM,T

● (X/Z)loc.

(ii) There is a commutative square

CBM
● (Z/S)loc CBM

● (Y/S)loc

CBM
● (Z/S)loc CBM

● (X/S)loc

g!

f !
T

(g○f)!
T

or in other words, a canonical homotopy

(g ○ f)!
T ≃ f !

T ○ g
!

of maps CBM
● (Z/S)loc → CBM

● (X/S)loc.



42 D. ARANHA, A. A. KHAN, A. LATYNTSEV, H. PARK, AND C. RAVI

Proof. The first claim follows from the second by taking S = Z and evaluating
on 1 ∈ CBM

● (Z/Z). For the second, consider the following square:

CBM
● (Z/S)loc CBM

● (X/S)loc

CBM
● (Z/S)loc CBM

● (Y/S)loc CBM
● (X/S)loc

CBM
● (NY/Z/S

)loc CBM
● (Y/S)loc CBM

● (X/S)loc

CBM
● (NY/Z/S

)loc CBM
● (X/S)loc

(g○f)!
T

g!

spY /Z

f !
T

0!
NY/Z f !

T

(0NY /Z ○f)
!
T

The middle left-hand square commutes by definition of the Gysin map g!,
and the middle right-hand square commutes tautologically. Therefore, to
show that the upper rectangle commutes it is enough to show that the total
outer composite square commutes, i.e.,

(0NY /Z ○ f)
!
T ○ spTY /Z ≃ (g ○ f)!

T , (5.22)

and that the lower rectangle commutes, i.e.,
(0NY /Z ○ f)

!
T ≃ f !

T ○ 0!
NY /Z . (5.23)

Let us show (5.22). Consider the following diagram of T -equivariant derived
stacks over S:

X X ×A1 X

Y Y ×A1 Y

NY /Z DY /Z Z

Z Z ×A1 Z

0

f

1

f×id f

0

0NY /Z

1

ĝ g

u v

0 1

where each square is homotopy cartesian and DY /Z is the derived deformation
space (Theorem 1.11). Note that the morphism h = ĝ○(f×id) ∶X×A1 →DY /Z

is quasi-smooth in weight 0, since the conditions on Tor-amplitude can be
checked on the derived fibres. Thus we have the following diagram

CBM
● (Z/S)loc CBM

● (Z ×A1
/S)loc CBM

● (Z/S)loc

CBM
● (NY/Z/S

)loc CBM
● (DY/Z/S

)loc CBM
● (Z/S)loc

CBM
● (X/S)loc CBM

● (X ×A1
/S)loc CBM

● (X/S)loc.

0!

u!

1!

v!

(0NY /Z ○f)
!
T h!

T
(g○f)!

T

0! 1!
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The two upper squares commute by functoriality of quasi-smooth Gysin
maps, and the two lower squares commute by Proposition 5.20. Moreover,
by A1-homotopy invariance, the two upper and lower horizontal arrows 0!

and 1! are isomorphisms and 0! ≃ 1!. It follows that the left-hand and right-
hand vertical composites are identified. Since u! ≃ spY /Z (by construction of
quasi-smooth Gysin maps), this yields the desired homotopy (5.22).

Let us show (5.23). By homotopy invariance for the vector bundle stack
π ∶ NY /Z → Y , it is enough to show the claim after applying π! on the right,
i.e.,

(0NY /Z ○ f)
!
T ○ π

!
≃ f !

T .

By definition, f !
T and (0NY /Z ○f)

!
T are the upper and lower composite arrows,

respectively, in the following diagram:

CBM
● (Y/S)loc CBM

● (NY/Z/S
)loc CBM

● (X/S)loc

CBM
● (NY/Z/S

)loc CBM
● (NX/Y ⊕NY/Z/S

)loc CBM
● (X/S)loc

spY/Z

π! q!

p!

spT0NY /Z ○f
r!

where p, q and r are the projections (so that p!, q!, r! are invertible). The
right-hand square commutes by functoriality of quasi-smooth Gysin maps
for the composition

r ∶ N0NY /Z ○f
≃ NX/Y ⊕NY /Z

q
Ð→ NX/Y

p
Ð→X,

and the left-hand square commutes by Proposition 1.17 applied to the square

X NY /Z

X Y,

0NY /Z ○f

π

f

where π and q ∶ NX/Y ⊕NY /Z → NX/Y are both smooth (the latter because
NY /Z → Y is smooth, as Y → Z is quasi-smooth). �

5.5. The virtual localization formula. Fix S ∈ dStkk.

Theorem 5.24. Let i ∶ Z → X be a closed immersion of T -equivariant
derived Artin stacks over S. Suppose that X is quasi-smooth over S, Z has
finite stabilizers and trivial T -action, and the conormal sheaf NZ/X has no
fixed part. If

CBM
● (X ∖ Z/S)loc ≃ 0 (5.25)

then we have
[X/S] ≃ i∗([Z/S] ∩ e(NZ/X)

−1
) (5.26)

in CBM
● (X/S)loc.

Corollary 5.27. Let X ∈ dStkS, Z a T -invariant closed derived substack
which is 1-Artin with finite stabilizers and trivial T -action. Suppose that
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the conormal sheaf NZ/X has no fixed part and for every geometric point of
X ∖Z we have StTX(x) ⊊ Tk(x). If X is quasi-smooth over S, then

[X/S] ≃ i∗([Z/S] ∩ e(NZ/X)
−1

) (5.28)

in CBM
● (X/S)loc, where i ∶ Z →X is the inclusion.

Proof. The additional assumption on X ∖Z guarantees the vanishing (5.25)
by the concentration theorem (Theorem 3.1). �

Proof of Theorem 5.24. First note that the assumptions imply that Z is also
quasi-smooth over S (see Remark A.50). By (5.25) and the localization
triangle, the direct image

i∗ ∶ CBM
● (Z/S)loc → CBM

● (X/S)loc

is invertible. Therefore, there exists a unique (up to contractible choice)
point α ∈ CBM

● (Z/S)loc such that i∗(α) ≃ [X/S]. Let p ∶ X→ S and q ∶ Z→ S
denote the projections. By Proposition 5.21, we have a canonical homotopy

i!T ○ p
!
≃ q!

T ,

where q!
T = q! since q is quasi-smooth (see Remark 5.19). Hence

[Z/S] = q
!
T (1) ≃ i!T ○ p!

(1) ≃ i!T ([X/S]) ≃ i
!
T i∗(α).

The right-hand side can be further computed as
i!T ○ i∗ = 0!

T ○ spZ/X ○ i∗ ≃ 0!
T ○ 0∗ = e(NZ/X) ∩ (−)

since by Corollary 1.16 we have spZ/X ○ i∗ ≃ 0∗. Combining the two displayed
formulas we get

i∗([Z/S] ∩ e(NZ/X)
−1

) ≃ i∗(α) ≃ [X/S].

�

Corollary 5.29. Let X ∈ dStkk be a quasi-smooth derived algebraic space
with T -action. Let i ∶ XT → X denote the inclusion of the fixed locus (see
Proposition A.23). Then we have a canonical identification

[X] ≃ i∗([X
T
] ∩ e(NXT /X)

−1
)

in CBM,T
● (X)loc.

Proof. By Proposition A.23, XT is identified with the homotopy fixed point
stack XhT . The assumptions of Corollary 5.27 thus hold by definition of XT

and XhT . �

Corollary 5.30. Let X ∈ dStkk be quasi-compact quasi-smooth Deligne–
Mumford with T -action. Let T ′ ↠ T be a reparametrization such that the
canonical morphism XhT ′ → XT is surjective (Corollary A.49). Then we
have

[X] ≃ ε∗([X
hT ′

] ∩ e(NXhT ′/X)
−1

)

in CBM,T
● (X)loc, where ε ∶ XhT ′ → X is the canonical morphism (Defini-

tion A.17).
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Proof. By Corollary 5.27 and Remark A.50 it remains to show that the
reparametrization induces an isomorphism CBM,T ′

● (X)loc → CBM,T ′
● (X)loc,

which follows from Theorem 1.24 applied to the BG-torsor [X/T ′] → [X/T ]

(where G is the kernel of T ′↠ T ). �

5.6. Simple wall-crossing formula. We prove a wall-crossing formula
for simple Gm-wall crossings as in [KL2, §2.1, App. A], [CKL, §4], [Joy,
Cor. 2.21]. In particular, we remove the global resolution assumptions in op.
cit. (and generalize to Deligne–Mumford stacks over general base fields).

Let X be a derived Deligne–Mumford stack of finite type over k with T = Gm-
action and quotient X = [X/T ]. Let X+ and X− be open substacks of X
such that M± = [X±/T ] ⊆ X are Deligne–Mumford.

Definition 5.31. Themaster space associated to (X,M+,M−) is the quotient
stack

M = [X ×P1
∖ (U− × {0} ∪U+ × {∞})/Gm]

where Gm acts diagonally on X × P1 and U− and U+ are the respective
complements of X+ and X− in X. Note that M is Deligne–Mumford and
that the T -action on X induces a T -action on M.

Theorem 5.32. Let Z = XhT ′ where T ′ ↠ T is a reparametrization as in
Corollary A.49. If X is quasi-smooth, then M+, M− and Z are quasi-smooth
and we have

[M+]
vir
− [M−]

vir
≃ rest=0 (

[Z]vir

e(NZ/X)
)

in CBM,T
● (MhT ′)loc ≃ CBM

● (MhT ′) ⊗C●(BT )loc.

Corollary 5.33. Suppose M+, M− and Z are moreover proper. Given
α ∈ π0C●

T (X)⟨d⟩, where X is of virtual dimension d + 1, let

α± ∈ π0C●
T (M±)⟨d⟩

correspond to α∣X± ∈ C●
T (X±)⟨d⟩ ≃ C●

T (M±)⟨d⟩, where X± = M± ×XX ⊆ X.
Then we have

α+ ⋅ [M+]
vir
− α− ⋅ [M−]

vir
= rest=0 (α ⋅

[Z]vir

e(NZ/X)
).

Here t ∈ π0C●(BT )⟨1⟩ ≃ π0C●(Spec(k))[t, t−1] is the first Chern class of the
tautological line bundle, and rest=0 denotes the residue of a Laurent series at
t = 0.

Proof of Theorem 5.32. There is a canonical morphism

Z∐M+∐M− →MhT ′ (5.34)

which is clearly bijective (on field-valued points). It is also formally étale, as
one can see immediately from Corollary A.36. Indeed, the relative cotangent
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complexes over M are given by

LZ/M ≃ LZ/X ≃ LX ∣
mov
Z [1],

LM+/M ≃ LM+/[X+×(P1∖{∞})/Gm] ≃ O(1)
[1],

LM−/M ≃ LM−/[X−×(P1∖{0})/Gm] ≃ O(−1)
[1],

LMhT ′/M ≃ LM∣
mov
MhT ′ [1],

where (−)(i) indicates the weight of the Gm-action. As a radicial étale
surjection, (5.34) an isomorphism. Now it follows from Corollary 5.30 that
we have

[M/T ]
vir

=
[M+]

vir

−t
+

[M−]
vir

t
+

[XhT ′]vir

e(NXhT ′/X)
.

The claim follows by applying rest=0. �

Remark 5.35. Following Subsect. 5.7, one could also formulate the above
result using the language of perfect obstruction theories. In particular, one
may remove the global embeddability or global resolution hypotheses in
[KL2, Thm. A.2] and [CKL, Thm. 4.2]. See also [Joy, Cor. 2.21, Rem. 2.20].

Remark 5.36. In particular, this proves the non-symmetric analogue of
[KL2, Conj. 1.2].

5.7. Perfect obstruction theories. We describe some analogous results
in the language of [BF, AP]. We first recall the notion of perfect obstruction
theory in the setting of Artin stacks. We stick to 1-Artin stacks for simplicity,
and we assume that the six functor formalism D satisfies étale descent (e.g.
it is the ∞-category of Betti sheaves, étale sheaves, or rational motives).

Definition 5.37. Let f ∶X → Y be a morphism of 1-Artin stacks in Stkk,
and let φ ∶ E → L≥−1

X/Y
∈ Dcoh(X). We say that φ is an obstruction theory for

f if hi(φ) are isomorphisms for all i ≥ 0 and h−1(φ) is surjective.

We say that φ is a perfect obstruction theory if it is an obstruction theory
and E ∈ Dperf(X)≥−1.

We now introduce an analog of the notion of quasi-smooth in weight zero.

Definition 5.38. Let T act on 1-Artin stacks X,Y ∈ Stkk and let f ∶X → Y
be a T -equivariant morphism. Assume that the T -action on X is trivial. We
say that a morphism φ ∶ E → L≥−1

X/Y
in Dcoh([X/T ]) is a T -equivariant good

obstruction theory for f ∶X → Y if

(i) φ is an obstruction theory, and

(ii) E fix ∈ D≥−1
perf(X ×BT ) and E mov ∈ D≥−2

perf(X ×BT ).

The construction of T -equivariant Gysin pull-back in Construction 5.16 for
quasi-smooth in weight zero morphisms can be generalized to T -equivariant
good obstruction theories.
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Construction 5.39. Let T act on 1-Artin stacks S ∈ Stkk and X,Y ∈ StkS .
Let f ∶ X → Y be a T -equivariant morphism over S. Assume that X has
finite stabilizers and the T -action on X is trivial. Let φ ∶ E → L≥−1

X/Y
be a

T -equivariant good obstruction theory for f ∶X → Y . Then we have a closed
immersion i ∶ CX/Y ↪ Nvir

X/Y ∶= V(E [−1]) by [AP, Prop. 8.2(2)]. We define
the T -equivariant virtual pullback

f !
T ∶ CBM,T

● (Y/S)loc → CBM,T
● (X/S)loc (5.40)

as the composition

CBM,T
● (Y/S)loc

spX/Y
ÐÐÐ→ CBM,T

● ((CX/Y )/S)loc
i∗
Ð→ CBM,T

● ((Nvir
X/Y )/S)loc ≃ CBM,T

● (X/S)loc,

where the specialization map spX/Y is constructed from the deformation
space M○

X/Y in [AP, Thm. 7.2] and the isomorphism is Theorem 5.6.

T -equivariant virtual pullbacks commute with proper pushforwards and
ordinary virtual pullbacks.

Proposition 5.41. Let S ∈ StkS be 1-Artin and suppose given a cartesian
square

X ′ Y ′

X Y

f ′

p q

f

of T -equivariant morphisms of 1-Artin stacks in StkS. Assume that X and
X ′ have finite stabilizers, and the T -actions on X and X ′ are trivial. Let
φ ∶ E → L≥−1

X/Y
be a T -equivariant good obstruction theory for f . Then

the composition E ∣X′ → L≥−1
X/Y

∣X′ → L≥−1
X′/Y ′ is also a T -equivariant good

obstruction theory for f ′.

(i) If q is proper, then there is a canonical homotopy

f !
T ○ q∗ ≃ p∗ ○ f

′!
T ∶ CBM,T

● (Y ′
/S)loc → CBM,T

● (X/S)loc.

(ii) If q is equipped with a perfect obstruction theory, then there is a
canonical homotopy

q!
○ f !

T ≃ f ′!T ○ q
!
∶ CBM,T

● (Y/S)loc → CBM,T
● (X ′

/S)loc.

We omit the proof of Proposition 5.41 since it follows by the arguments in
section Sect. 1 by replacing the derived deformation space DX/Y of [HKR]
with the classical deformation space M○

X/Y of [AP] (cf. [Man, Thm. 4.1]).

Theorem 5.42. Let S ∈ Stkk be 1-Artin and let f ∶ X → Y and g ∶ Y → Z
be T -equivariant morphisms of 1-Artin stacks in StkS. Assume that X is
has finite stabilizers and the T -action on X is trivial. Let φX/Y ∶ EX/Y →

L≥−1
X/Y

, φX/Z ∶ EX/Z → L≥−1
X/Z

be T -equivariant good obstruction theories and
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φY /Z ∶ EY /Z → L≥−1
Y /Z

be a T -equivariant perfect obstruction theory. Assume
that there exists a morphism of homotopy cofiber sequences

f∗EY /Z EX/Z EX/Y

(f∗L≥−1
Y /Z

)≥−1 L≥−1
X/Z

Cofib(a)

f∗φY /Z φX/Z φ′
X/Y

a

with an equivalence

φX/Y ≃ r ○ φ′X/Y ∶ EX/Y → L≥−1
X/Y

where r ∶ Cofib(a) → Cofib(a)≥−1 ≃ L≥−1
X/Y

is the canonical map. Then we
have a canonical homotopy

(g ○ f)!
T ≃ f !

T ○ g
!
∶ CBM,T

● (Z/S)loc → CBM,T
● (X/S)loc. (5.43)

Since the arguments are almost the same as in Proposition 5.21, we will only
give a sketch proof of Theorem 5.42.

Sketch of the proof. Consider the composition

h ∶X ×A1
→ Y ×A1

→M○
Y /Z .

We claim that there is a canonical isomorphism

L≥−1
X×A1/M○

Y /Z
≃ Cofib(f∗LY /Z ⊠OA1

(T,a)
ÐÐÐ→ (f∗LY /Z ⊕LX/Z) ⊠OA1)

≥−1

where T ∈ Γ(A1,OA1) is the coordinate function. Indeed, when f and g are
DM morphisms of 1-Artin stacks, the claim is shown in [KKP]. The general
case follows from descent.

Form a morphism of homotopy cofiber sequences

f∗EY /Z f∗EY /Z ⊕ EX/Z Eh

(f∗LY /Z)
≥−1 (f∗LY /Z)

≥−1 ⊕L≥−1
X/Z

Cofib(T, a).

f∗φY /Z f∗φY /Z⊕φX/Z φ′h
(T,a)

Then the composition

φh ∶ Eh
φ′h
Ð→ Cofib(T, a) → Cofib(T, a)≥−1

≃ L≥−1
h

is a T -equivariant good obstruction theory for h.

Consider the composition

k ∶= 0Nvir
Y /Z

○ f ∶X → Nvir
Y /Z

where Nvir
Y /Z ∶= V(EY /Z[−1]). Then k has a T -equivariant good obstruction

theory

φk ∶= f
∗φY /Z ⊕ φX/Y ∶ f∗EY /Z ⊕ EX/Y → τ≥−1

(f∗LY /Z ⊕LX/Y ).
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By Proposition 5.41(ii), we have a canonical homotopy
(g ○ f)!

T ≃ k!
T ○ spY /Z ∶ CBM,T

● (Z/S)loc → CBM,T
● (X/S)loc.

Hence it suffices to show the proposition for
X → Y → Nvir

Y /Z .

By the homotopy property of CBM
● ((−)/S), it suffices to show the proposition

for
X → Nvir

Y /Z → Z.

Then an analog of Proposition 1.17 for classical specialization maps [AP]
and smooth pullbacks completes the proof. �

Proposition 5.44. Let S ∈ Stkk be 1-Artin and f ∶X → Y be a T -equivariant
morphism of 1-Artin stacks in StkS. Assume that X has finite stabilizers
and the T -action on X is trivial. Let φ ∶ E → L≥−1

X/Y
be a T -equivariant good

obstruction theory for f ∶X → Y . If f ∶X → Y is a closed immersion, then
we have a canonical homotopy

f !
T ○ f∗ ≃ e(N

vir
X/Y) ∩ (−) ∶ CBM,T

● (X/S)loc → CBM,T
● (X/S)loc

where Nvir
X/Y

∶= V(E [−1]).

Proposition 5.44 follows immediately from Corollary 1.16.
Corollary 5.45. Let X ∈ Stkk be a Deligne–Mumford stack with a T -action.
Let φ ∶ E → L≥−1

X be a T -equivariant perfect obstruction theory. Choose a
reparametrization ρ ∶ T ′ → T such that XrhT =XhT ′. Then the composition
E ∣fix
XhT ′ → LX ∣≥−1

XhT ′ → L≥−1
XhT ′ = L

≥−1
XrhT is a perfect obstruction theory for XrhT

and is independent of the choice of T ′. Moreover, we have
[X]

vir
= i∗([X

rhT
]
vir
∩ e(Nvir

))
−1

∈ CBM,T
● (X)loc

where i ∶XrhT ↪X denotes the inclusion map and Nvir ∶= V(E ∣mov
XhT ′ ).

6. Localization by cosections

In this section, the base ring k is arbitrary; all derived stacks are assumed
locally of finite type over k.

6.1. Cohomological reduction. Let f ∶X → Y be a homotopically finitely
presented morphism in dStkk.
Notation 6.1. Let α ∶ OX → LX/Y [−1] be a (−1)-shifted 1-form (or equiva-
lently, a cosection α∨ ∶ L∨

X/Y [1] → OX).

(i) We write X(α) for the derived zero locus of α, so that there is a
homotopy cartesian square

X(α) X

X N∗
X/Y

α

0
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where N∗
X/Y ∶= VX(L∨

X/Y [1]) is the relative conormal bundle (= (−1)-
shifted cotangent bundle).

(ii) Let Kα denote the cofibre of α, so that there is an exact triangle

OX
α
Ð→ LX/Y [−1] →Kα.

Set Kα ∶= VX(Kα), and denote by iK ∶ Kα → NX/Y the canonical
closed immersion.

We say that X is cohomologically reduced over Y with respect to α if the
specialization map

spX/Y ∶ CBM
● (Y/Y ) → CBM

● (NX/Y /Y
)

factors through CBM
● (Kα

/Y ). More precisely:

Definition 6.2. Let f ∶ X → Y be a homotopically of finite presentation
morphism between derived Artin stacks. A cohomological reduction ρ of
f ∶X → Y consists of the data of a (−1)-shifted 1-form α ∶ OX → LX/Y [−1]
and a null-homotopy of the composite

CBM
● (Y/Y )

spX/Y
ÐÐÐ→ CBM

● (NX/Y /Y
)

res
Ð→ CBM

● (NX/Y ∖K
α
/Y ).

By the localization triangle, the latter gives rise to the ρ-reduced specialization
map

spρ
X/Y

∶ CBM
● (Y/Y ) → CBM

● (Kα
/Y )

and an identification
spX/Y ≃ iK,∗ ○ spρ

X/Y
.

Given such ρ and α, we will also say that ρ is a cohomological reduction of f
with respect to α.

Here is one source of examples of cohomological reduction:

Proposition 6.3. Let f ∶X → Y be a homotopically of finite presentation
morphism of derived Artin stacks. Let φ ∶ OX → OX[−1] be a (−1)-shifted
function on X, and let

α ∶ OX
ddR(φ)
ÐÐÐÐ→ LX[−1] → LX/Y [−1]

be induced by the de Rham differential of φ. Then there exists a cohomological
reduction ρ of f by α.

Proof. Form the derived zero locus of the (−1)-shifted function φ:

Xφ X

Spec(k) A1
k[−1].

φ

0

Note that Xφ →X induces an isomorphism on classical truncations.
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By definition of Kα and the transitivity exact triangle

OXφ
α
Ð→ LX/Y ∣Xφ[−1] → LXφ/Y [−1]

we get a canonical identification Kα∣Xφ ≃ LXφ/Y [−1]. By Proposition 1.15
we have the commutative square of specialization maps

CBM
● (Y/Y ) CBM

● (NXφ/Y /Y
) CBM

● (Kα ×X X
φ
/Y

)

CBM
● (Y/Y ) CBM

● (NX/Y /Y
) CBM

● (NX/Y /Y
)

sp
Xφ/Y

spX/Y

where the right-hand vertical arrow is direct image along the closed immersion
Kα ×X X

φ →Kα → NX/Y . The claim follows. �

We also have a “cone reduction” criterion, inspired by [KL].

Definition 6.4. Let f ∶ X → Y be a homotopically finitely presented
morphism of derived Artin stacks and let α be a (−1)-shifted 1-form. Let C
be the relative intrinsic normal cone of the classical truncation fcl ∶Xcl → Ycl
(see [AP, Thm. 6.2]). We say that f satisfies cone reduction with respect to
α if there is an inclusion Cred ⊆K

α of closed substacks of NX/Y .

Proposition 6.5. Let f ∶ X → Y be a quasi-smooth morphism of derived
Artin stacks and let α be a (−1)-shifted 1-form. If f satisfies cone reduction
with respect to α, then there exists a canonical cohomological reduction ρ of
f by α, and moreover a factorization

spρ
X/Y

∶ CBM
● (Y/Y ) → CBM

● (C/Y ) ≃ CBM
● (Cred/Y )

iC/K,∗
ÐÐÐ→ CBM

● (Kα
/Y )

where iC/K ∶ Cred →Kα is the inclusion.

Proof. In the following, we will identify the Borel–Moore homology of all
derived stacks with those of their classical truncations (using the derived
invariance property). First recall that the specialization map factors through
C:

spX/Y ∶ CBM
● (Y/Y )

spcl
Xcl/Ycl

ÐÐÐÐÐ→ CBM
● (C/Y )

iC/N ,∗
ÐÐÐ→ CBM

● (N/Y ). (6.6)
where iC/N ∶ C→ N is the inclusion into the derived normal bundleN ∶= NX/Y ,
and the classical specialization spcl

Xcl/Ycl
is defined using [AP, Thm. 7.2] (see

[Kha5, Rem. 1.13]).

By the assumption we have a commutative diagram

CBM
● (Cred/Y ) CBM

● (N/Y ) CBM
● (N ∖ C/Y )

CBM
● (Kα

/Y ) CBM
● (N/Y ) CBM

● (N ∖Kα
/Y ).

iC/K,∗

res

res

res

Therefore, it is enough to exhibit a null-homotopy of the composite

CBM
● (Y/Y )

spX/Y
ÐÐÐ→ CBM

● (C/Y )
res
Ð→ CBM

● (N ∖ C/Y ),
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which exists by the factorization (6.6) and the canonical null-homotopy of
the upper row above. �

Thus, there are two orthogonal types of examples in which cone reduction
(and hence cohomological reduction) is known to hold. First, we can restrict to
(−1)-shifted 1-forms arising from a (−1)-shifted function as in Proposition 6.3
(that the cone reduction condition holds in that case is implicit in the proof).
On the other hand, we can have the condition for arbitrary (−1)-shifted
1-forms, but at the cost of restricting to complex Deligne–Mumford stacks:

Example 6.7 (Kiem–Li). Suppose that the base ring k is the field of complex
numbers. Let X be a quasi-smooth derived Deligne–Mumford stack over
Y = Spec(k) and let α be a (−1)-shifted 1-form. Then it follows from the
cone reduction lemma of Kiem–Li that there is an inclusion Cred ⊆K

α, where
C is the intrinsic normal cone of Xcl (see [KL, Lem. 4.4, Cor. 4.5]). In
particular, Proposition 6.5 gives a cohomological reduction of X with respect
to α; we may regard this as a cohomological variant of the cycle-theoretic
statement of [KL, Prop. 4.3].

We believe that Example 6.7 holds for Y = Spec(k) with k an arbitrary field
of characteristic zero. On the other hand, the next two examples show that
the cone reduction condition for general (−1)-shifted 1-forms cannot hold
for general bases Y .

Example 6.8. Let Y = Spec(k), with k a field of characteristic p > 0. Let
X ⊆ A1

k be the zero locus of the function A1
k → A1

k sending x ↦ xp, and
let α ∶ OX → LX[−1] be the (−1)-shifted 1-form corresponding under the
isomorphism LX[−1] ≃ OX ⊕OX[−1] to the inclusion. Then α is nowhere
zero, but the fundamental class of X (which is underived quasi-smooth, i.e.,
lci) is nonzero (it is the generator of π0CBM

● (X)⟨∗⟩). Moreover, there is no
inclusion of CX,red ≃ [A1

k/A
1
k] (trivial action) in Kα

red ≃ [Spec(k)/A1
k].

Example 6.9. When Y is higher dimensional, cone reduction rarely holds
e.g. for regular closed immersions X → Y . For example, take f the inclusion
0 ∶ Spec(k) →A1

k.

We also record the following corollary of Proposition 6.5:

Corollary 6.10. Let f ∶ X → Y be a quasi-smooth morphism of derived
Artin stacks and let α be a (−1)-shifted 1-form. Suppose there exists a
smooth surjection U ↠ X of derived Artin stacks, a (−1)-shifted function
φ ∶ OU → OU [−1], and a homotopy α∣U ≃ ddR(φ) of 1-forms. Then f satisfies
cone reduction with respect to α. In particular, there exists a canonical
cohomological reduction ρ of f by α.

Proof. First note that cone reduction holds for f ∣U with respect to ddR(φ)
(as is implicit in the proof of Proposition 6.3). By smooth descent of both the
intrinsic normal cone and the derived normal bundle (see [AP, Thm. 6.2] and
[Kha2, Prop. 1.2] respectively), the cone reduction property is smooth-local
on X. Hence the claim follows. �
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By the following lemma, any (−1)-shifted closed 1-form (in the sense of
shifted symplectic geometry [PTVV]) is locally exact, and thus admits a
cohomological reduction by Corollary 6.10.
Lemma 6.11. Suppose the base field k is algebraically closed of characteristic
zero. Let X ∈ dStkk be quasi-compact and α a closed (−1)-shifted 1-form on
X. Then there exists a smooth surjection U ↠ X of derived Artin stacks,
a (−1)-shifted function φ ∶ OU → OU [−1], and a homotopy α∣U ≃ ddR(φ) of
closed 1-forms (where ddR is as in [PTVV, Rem. 1.17]).

Proof. This is a variation of the proof of [BBJ, Prop. 5.7(a)]. Choose any
smooth surjection U ↠X where U = Spec(A) is an affine derived scheme of
finite type over k. By [BBJ, Prop. 5.6(a)], α lifts to a class in HC−1(A)(0)
and is hence represented by an A-linear morphism φ ∶ A → A[−1] with
ddR(φ) ≃ α∣U . �

6.2. Localized fundamental classes.
Theorem 6.12. Let f ∶ X → Y be a quasi-smooth morphism of derived
Artin stacks of relative virtual dimension d over a derived Artin stack S. Let
α ∶ OX → LX/Y [−1] be a (−1)-shifted 1-form. Then for any cohomological
reduction ρ of f with respect to α, there is a ρ-localized Gysin pull-back

f !
ρ ∶ CBM

● (Y/S) → CBM
● (X(α)/S)⟨−d⟩

and a commutative diagram

CBM
● (Y/S) CBM

● (X(α)/S)⟨−d⟩

CBM
● (Y/S) CBM

● (X/S)⟨−d⟩,

f !
ρ

i∗

f !

where i ∶X(α) →X is the inclusion.

In particular:
Corollary 6.13. In the situation of Theorem 6.12, there is a ρ-localized
(relative) fundamental class

[X/Y ]ρ ∈ CBM
● (X(α)/Y )⟨−d⟩

with a canonical identification in CBM
● (X/Y )

i∗[X/Y ]ρ ≃ [X/Y ],

and a localized Gysin pull-back
f !
ρ ∶ CBM

● (Y ) → CBM
● (X(α))⟨−d⟩

with i∗ ○ f !
ρ ≃ f

!, where i ∶X(α) →X is the inclusion.

Proof. For the fundamental class, define [X/Y ]ρ as the image of 1 by

f !
ρ ∶ CBM

● (Y/Y ) → CBM
● (X(α)/Y )⟨−d⟩.

For the second claim, take S = Spec(k). �
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Notation 6.14. We will usually abuse notation and leave ρ implicit in the
notation when there is no risk of ambiguity. However, we warn the reader
that different choices of ρ can lead to non-homotopic f !

α and [X/Y ]α.

Remark 6.15. Our ρ-localized Gysin pull-back is comparable with the
construction of [CKL, Def. 2.9] (in Chow homology), rather than that of
[KL, Prop. 1.3].

Proof of Theorem 6.12. Let i ∶ X(α) → X denote the inclusion and j ∶

X∖X(α) →X the complementary open immersion. Consider the localization
triangle

CBM
● (X(α)/Y )

i∗
Ð→ CBM

● (X/Y )
j!

Ð→ CBM
● (X ∖X(α)/Y ). (6.16)

It will suffice to construct a null-homotopy of the composite

j!
○ f !

∶ CBM
● (Y/Y ) → CBM

● (X ∖X(α)/Y ),

which by functoriality is identified with (f ○ j)!. By replacing X with
X ∖X(α), we may therefore assume that α is nowhere zero (i.e., that the
cosection α∨ is surjection) and construct a null-homotopy of f !.

Consider the following commutative diagram:

CBM
● (Y/Y ) CBM

● (Kα
/Y ) CBM

● (Kα
/Y )

CBM
● (Y/Y ) CBM

● (NX/Y /Y
) CBM

● (Kα
/Y )⟨1⟩

spρ

iK,∗ ∩e(O)

sp i!K

where d is the relative virtual dimension of f ∶ X → Y (= the opposite of
the virtual rank of NX/Y ). The left-hand square comes from the definition
of the cohomological reduction ρ. The middle square is the self-intersection
formula for the closed immersion iK , which is quasi-smooth with trivial
conormal sheaf. Since e(O) is canonically null-homotopic, this provides a
null-homotopy of i!K ○ spX/Y .

Finally, note the condition that α is nowhere zero translates to the fact that
Kα ∈ Dperf(X)⩾0, i.e., that Kα is smooth (a vector bundle stack), and hence
the zero section 0K ∶ X → Kα is quasi-smooth. Thus by functoriality of
Gysin pull-back and the definition of the Gysin pull-back along f , we get
the chain of identifications

f !
≃ 0!

N ○ spX/Y ≃ 0!
K ○ i!K ○ spX/Y ≃ 0

as desired. �

6.3. Reduced fundamental classes. For (−1)-shifted 1-forms that are
nowhere zero (so that the dual cosection is surjective), we deduce from
Corollary 6.13 that the fundamental class vanishes. In this subsection, we
construct a reduced fundamental class in this situation.
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Construction 6.17. Let f ∶X → Y be a quasi-smooth morphism of derived
Artin stacks of relative virtual dimension d over a derived Artin stack S.
Let α ∶ OX → LX/Y [−1] be a (−1)-shifted 1-form. If α is nowhere zero,
then X(α) is empty and Kα is of Tor-amplitude ⩽ 0 (Notation 6.1). For
any cohomological reduction ρ of f with respect to α, the ρ-reduced Gysin
pull-back along f is the composite

f !
ρ-red ∶ CBM

● (Y/Y )
spρ
X/Y

ÐÐÐ→ CBM
● (Kα

/Y ) ≃ CBM
● (X/Y )⟨−d − 1⟩

where the second isomorphism is homotopy invariance for the vector bundle
stack Kα. The ρ-reduced fundamental class of X over Y , denoted [X/Y ] ∈

CBM
● (X/Y )⟨−d − 1⟩ is the image of 1 by f !

ρ-red.

When α comes from a (−1)-shifted function, we show that the reduced
fundamental class can be realized by a quasi-smooth derived stack:

Construction 6.18. Let f ∶X → Y be a quasi-smooth morphism of derived
Artin stacks of relative virtual dimension d over a derived Artin stack S. Let
φ ∶ OX → OX[−1] be a (−1)-shifted function on X. The derived reduction of
the derived stack X with respect to φ is the derived fibred product

Xφ-red X

Spec(k) A1
k[−1].

φ

0

Note that Xφ-red has the same classical truncation as X, and is of virtual
dimension d+1 over Y (where d is the virtual dimension of X over Y ). (Note
that this construction already appeared in the proof of Proposition 6.3.)

Proposition 6.19. Let the notation be as in Construction 6.18. Suppose
that the de Rham differential α of φ is nowhere zero. Let ρ be the canon-
ical cohomological reduction of f by α as in Proposition 6.3. Then the
derived reduction Xφ-red is quasi-smooth over Y , and its fundamental class
is canonically identified with the ρ-reduced fundamental class of X over Y :

[Xφ-red
/Y

] ≃ [X/Y ]
ρ-red

under the derived invariance isomorphism CBM
● (Xφ-red

/Y
) ≃ CBM

● (X/Y ).

Proof. Easy. �

7. Examples from moduli theory

In this section we assume that the base ring k is regular noetherian.

7.1. Perfect complexes and pairs.
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7.1.1. Perfect complexes. Let Perf denote the derived moduli stack of perfect
complexes. By construction, we have the universal perfect complex E univ on
Perf. Its cotangent complex is given by

LPerf = E univ
⊗ E univ,∨

[−1], (7.1)

see [Lur2, Rem. 19.2.2.4].

Given a derived stack X, let Perf(X) denote the derived moduli stack of
perfect complexes on X, i.e. the derived mapping stack

Perf(X) = Map(X,Perf).

There is an evaluation map

ev ∶X ×Perf(X) =X ×Map(X,Perf) → Perf.

Let EX = ev∗(E univ). When X is smooth proper and Deligne–Mumford,
Perf(X) is a union of n-Artin derived stacks (for varying n) which are
homotopically of finite presentation, and its cotangent complex is given by

LPerf(X) = pr2,∗(Hom(EX ,EX) ⊗ pr∗1(ωX))[−1] (7.2)

where pri are the respective projections of X ×Perf(X), and ωX = ΛdLX[d]
is the derived dualizing complex (with d the dimension of X). See [HLP,
Thm. 5.1.1], [TV, Cor. 0.4].

7.1.2. Determinant. Given a derived stack X, denote by

Pic(X) = Map(X,BGm)

the (derived) Picard stack of X. If X is smooth proper and Deligne–Mumford,
then Pic(X) is Artin by [HLP, Thm. 5.1.1]. Recall that there is a canonical
determinant morphism

det ∶ Perf(X) → Pic(X),

see e.g. [STV, §3.1].

7.1.3. Pairs. Consider the derived moduli stack Pair of pairs (E , σ) where
E is a perfect complex and σ ∶ O → E is a section. This is equivalently
V(E univ,∨) where E univ is the universal perfect complex on Perf. Given a
derived Artin stack X, we let Pair(X) denote the derived mapping stack
Map(X,Pair).

Let F ∈ Dperf(Pair) denote the fibre of the universal section σuniv. The
cotangent complex of Pair is then

LPair = F ⊗ π∗(E univ,∨
) ≃ HomPair(F , π∗(E univ

)),

where π ∶ Pair→ Perf is the projection, since LPerf = E univ ⊗ E univ,∨[−1].

Note that there is also a canonical morphism

Pair→ Perf (7.3)

sending (E , σ) ↦ Cofib(σ).
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7.2. Perfect complexes on surfaces. In this section, we will construct
(−1)-shifted 1-forms on the moduli of perfect complexes on a smooth pro-
jective surface with h1 = 0 (see Construction 7.6). We begin with some
preliminaries about the Picard stack.

Proposition 7.4. Let k be a field and S be a smooth projective surface with
h1(S) = 0. Then there is a canonical isomorphism

Pic(S) ≃ Pic(S)cl ×V(H0
(S,KS))[−1].

We will make use of the following lemma in the proof.

Lemma 7.5. Let B be a derived Artin stack and f ∶ X → Y a morphism
between derived Artin stacks over B. If X and Y are flat over B and fcl is
an isomorphism, then f is an isomorphism.

Proof. It will suffice to show that f is formally étale, i.e., the relative cotan-
gent complex LX/Y vanishes. Let s ∶ Spec(k) → B be a morphism and denote
by Xs = Spec(k)×BX and Ys = Spec(k)×B Y the fibres. Since X and Y
are flat over B, Xs and Ys are classical. Therefore, we have a commutative
diagram

Xs Xcl X

Ys Ycl Y

fs fcl f

where the right-hand square is homotopy cartesian (since f is flat) and the
outer square is homotopy cartesian (by definition), hence so is the left-hand
square. In particular, since fcl is an isomorphism, so is fs ∶ Xs → Ys. Thus
we have LX/Y ∣Xs ≃ LXs/Ys ≃ 0. Since s was arbitrary, the claim follows. �

Proof of Proposition 7.4. Consider the quotient Picrig(S) of Pic(S) by the
BGm-action. Consider the following diagram:

Pic(S)cl Pic(S) Pic(S)cl

Picrig(S)cl Picrig(S) Picrig(S)cl,

r

rcl

where Picrig(S)cl is equivalently the rigidification of the classical Picard stack
Pic(S)cl. In the left-hand square, the horizontal arrows are the inclusions
of the classical truncations, and the square is homotopy cartesian because
the quotient maps are smooth. Note that the assumptions on S imply that
Picrig(S)cl is a disjoint union of spectra of fields (see e.g. [Mum, Lect. 24]).
Therefore, we have a retraction rcl as in the right-hand square. Since the left-
hand square is homotopy cartesian, it lifts to a retraction r of the upper mor-
phism. We now claim that the right-hand square is also homotopy cartesian,
or equivalently, that the morphism Pic(S) → Picrig(S)×Picrig(S)cl Pic(S)cl is
invertible. Indeed, since both source and target are smooth over Picrig(S),
this follows from Lemma 7.5. By [MR, Prop. C.0.1], it follows that there
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is an isomorphism Picrig(S) ≃ NPicrig(S)cl/Picrig(S). By base change we thus
deduce

Pic(S) ≃ NPic(S)cl/Pic(S).

Note that the cotangent complex of Pic(S) is given (by its definition as a
mapping stack) by

LPic(S) ≃ OPic(S) ⊗RΓ(S,KS)[1]
since S is a smooth surface. Since Pic(S)cl is smooth, we have LPic(S)cl ≃

(LPic(S))
⩾0∣Pic(S)cl . Thus LPic(S)cl/Pic(S)[−1] ≃ L<0

Pic(S) ≃ OPic(S)⊗H0(S,KS)[1].
Finally, we get

Pic(S) ≃ Pic(S)cl ×V(H0
(S,KS)[1])

as claimed. �

Construction 7.6. Let k be a field and S be a smooth projective surface with
h1(S) = 0. Given a canonical divisor on S, i.e., an element Θ ∈ H0(S,KS),
consider the composite

Perf(S) det
ÐÐ→ Pic(S) ≃ Pic(S)cl ×V(H0

(S,KS))[−1]

→V(H0
(S,KS))[−1] Θ

Ð→A1
k[−1].

This is a (−1)-shifted function on Perf(S) and its de Rham differential defines
a (−1)-shifted 1-form. By restriction along the projection Pair(S) → Perf(S),
we also get a (−1)-shifted function on Pair(S).

7.3. Hilbert schemes of divisors and stable maps on surfaces. Let k
be a field and S be a smooth projective surface with h1(S) = 0. We apply
Construction 7.6 to the Hilbert scheme of divisors on S and to the moduli of
stable maps on S. In particular, we construct a reduced virtual fundamental
class for stable maps on K3 surfaces over arbitrary base fields (even though
the moduli stack is not Deligne–Mumford in positive characteristic).

Example 7.7. Let Div(S) denote the derived Hilbert scheme of divisors,
i.e., the open substack of Pair(S) classifying pairs (OD, σ) where D is a
divisor on S and σ ∶ OS ↠ OD is the canonical surjection. Construction 7.6
gives rise to a canonical (−1)-shifted 1-form on Div(S). This is dual to the
cosection used in [CK] (over k = C).

Example 7.8. Let S be as in Construction 7.6. Let Mg,n(S) denote the
derived moduli stack of stable maps to S of genus g with n marked points.
By pull-back along the canonical morphism

Mg,n(S) → Perf(S),
sending (f ∶ C → X) for a curve C to Rf∗(OC) ∈ Dperf(X) (see e.g. [STV,
Def. 3.9]), we get a canonical (−1)-shifted 1-form on Mg,n(S). In particular,
there is a corresponding derived reduction M

red
g,n(S) (see Construction 6.18).

When S is a K3 surface, this coincides with [STV, Def. 4.7]. Since the
(−1)-shifted 1-form is nowhere zero in the K3 case (see [STV, Thm. 4.8],
which holds over general base fields), we find that the fundamental class of
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M
red
g,n(S) coincides (in the case of motivic cohomology) with the Chow cycle

constructed in [MPT] by Proposition 6.19.

7.4. Pairs on threefolds. We now consider the moduli stack of pairs on a
threefold, whose stable loci give rise to the Pandharipande–Thomas theory
of stable pairs [PT].

Example 7.9. Let X be a smooth projective threefold. Let θ ∈ H0(X,Ω2
X)

be a holomorphic 2-form. We define a canonical (−1)-shifted 1-form on
Perf(X) as follows.

Let EX be the perfect complex on X ×Perf(X) defined in 7.1.1. Its Atiyah
class (see e.g. [Lur2, §19.2.2]) is a morphism At ∶ EX → LX×Perf(X) ⊗ EX[1],
which by post-composition with LX×Perf(X) → LX×Perf(X)/Perf(X) gives

At ∶ EX → LX×Perf(X)/Perf(X) ⊗ EX[1] ≃ pr∗1ΩX ⊗ EX[1],
where pr1 ∶X ×Perf(X) →X is the projection. This gives rise to

Hom(EX ,EX)
At
Ð→ Hom(EX ,pr∗1ΩX ⊗ EX)

tr
Ð→ pr∗1ΩX[1]. (7.10)

Composing (7.10) with the morphism

ΩX
∪θ
Ð→ ΩX ⊗Λ2ΩX → Λ3ΩX

yields
Hom(EX ,EX)[2] → pr∗1ΩX[3] → pr∗1Λ3ΩX[3] = pr∗1(ωX).

Since Hom(EX ,EX) ≃ EX ⊗ E ∨
X is self-dual this corresponds to a canonical

map
OX×Perf(X) → Hom(EX ,EX)[−2] ⊗ pr∗1(ωX).

Finally by adjunction, this is identified with
OPerf(X) → pr2,∗(Hom(EX ,EX) ⊗ pr∗1(ωX))[−2] ≃ LPerf(X)[−1]

which is the desired (−1)-shifted 1-form.

Remark 7.11. We expect that the 1-form in Example 7.9 is closed (or more
precisely, it admits a closing structure in the sense of [PTVV]). This would
imply (at least over algebraically closed fields of characteristic zero) that it
admits a cohomological reduction (combine Lemma 6.11 and Corollary 6.10).

Remark 7.12. By inverse image along the cofibre morphism Pair → Perf
(7.3), Example 7.9 gives a (−1)-shifted 1-form on the moduli of pairs. Consider
its restriction to the locus of Pandharipande–Thomas stable pairs with fixed
curve class β ∈ H2(X,Z) and Euler characteristic n ∈ Z (see [PT]). If this
restriction is nowhere zero, then by Corollary 6.13 the virtual fundamental
class vanishes, and we get a reduced fundamental class (Construction 6.17) for
the moduli of stable pairs. Otherwise, assuming the conjecture in Remark 7.11
(and assuming k is algebraically closed of characteristic zero), the (−1)-
shifted 1-form gives rise to a localized virtual fundamental class for the
moduli of stable pairs. When X is a local surface, i.e. the canonical bundle
KS of a smooth projective surface S over k (or its projective completion),
these constructions are considered in [KT, Eq. (28)] and [KT2, Eq. (16)],
respectively.
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7.5. Higgs bundles/sheaves on curves. Let k be a field and C a smooth
proper and geometrically connected curve over k. Consider the moduli stack
Coh(C) of coherent sheaves on C. This is a smooth 1-Artin stack locally of
finite type over k.

Denote by Higgs the moduli stack of Higgs sheaves on C, i.e., the cotangent
bundle of Coh(C) (which for us means the total space of the cotangent
complex). This admits a canonical scaling action by the torus T = Gm. Let
Λ denote the closed substack parametrizing nilpotent Higgs sheaves, i.e.,
pairs (F , θ) where F ∈ Coh and θ ∶ F →F ⊗KC is nilpotent (with KC the
canonical bundle of C).
Theorem 7.13. Let Σ ⊆ Pic(BT ) denote the set of nontrivial invertible
sheaves on BT . Then Σ satisfies condition (LT ) for Higgs∖Λ. In particular,
the direct image map

CBM,T
● (Λ)loc → CBM,T

● (Higgs)loc

is invertible (where the localization is as in Corollary 2.30).

Proof. Let F be a Higgs sheaf over an algebraically closed extension field κ
of k. By Corollary 4.9 it is enough to show that, if F is not nilpotent, then
the T -stabilizer at the corresponding geometric point of Higgs is a proper
subgroup of Tκ. We are grateful to A. Minets for providing the following
argument.

First note that if F is not nilpotent, then either its maximal torsion Higgs
subsheaf F0 is nilpotent or the quotient F ′ = F /F0 is nilpotent. Thus we
may assume that F is either torsion or locally free.

Recall that the moduli stack of locally free Higgs sheaves (= Higgs bundles)
of rank r admits a canonical T -equivariant map (the Hitchin fibration) to
the scheme Ar = ⊕r

i=1 H0(C,K⊗i
C ), where T acts on H0(C,K⊗i

C ) with weight
i, by sending F to the coefficients of the characteristic polynomial of its
Higgs field. Moreover, a locally free Higgs sheaf F is nilpotent if and only if
its image in the Hitchin base is trivial. By Corollary 2.21, this implies the
claim in the locally free case.

In the torsion case, we can argue similarly using the canonical map from the
moduli stack of torsion Higgs sheaves to Symd(T ∗C), sending a Higgs sheaf
to the support of the corresponding coherent sheaf on T ∗C (under the “BNR
correspondence”, see [BNR] or [Sim, Lem. 6.8]). �

Remark 7.14. For the substack of torsion Higgs sheaves, Theorem 7.13
recovers [Min, Cor. 4.3] by taking π0. In other words, we can regard the
result as a generalization of loc. cit. to arbitrary rank Higgs sheaves7 and to
“higher” oriented Borel–Moore homology theories.
Remark 7.15. Theorem 7.13 admits an analogous statement for Higgs G-
bundles, for a connected reductive group G, using the same Hitchin fibration

7A similar claim is made in [SS, Prop. 3.7], but the proof is not correct because the
localization does not commute with cofiltered limits. This is related to the reason why the
discussion in Subsect. 2.7 is necessary.



LOCALIZATION THEOREMS FOR ALGEBRAIC STACKS 61

argument. Similarly, there is a parabolic variant using the parabolic Hitchin
fibration [Yok].

Appendix A. Fixed loci of group actions on algebraic stacks

In this appendix we fix a scheme S and an fppf group algebraic space G over
S. All Artin stacks will be assumed to have separated diagonal.

For an Artin stack X over S with G-action, we will define a focus locus
XG ⊆ X and study its properties. We will also introduce a homotopy
fixed point stack XhG, which usually is not a substack of X but has better
deformation-theoretic properties. In the case of torus actions, we will prove
a certain relation between the two constructions (Theorem A.48).

A.1. Stabilizers of group actions. Given an action of an algebraic group
G on an Artin stack X, we define the stabilizer of the action (“G-stabilizer”)
at any point x of X. When the stabilizer at x of X itself is trivial, this
coincides with the stabilizer of the quotient stack [X/G] at x.

Remark A.1. Let f ∶ X → Y be a morphism of Artin stacks over S. The
relative inertia stack IX/Y is a group Artin stack over X which fits into a
cartesian square

IX/Y IX/S

X IY /S ×Y X

of group stacks over X. The lower horizontal arrow is the base change of
the identity section e ∶ Y → IY /S . When f is representable, IX/Y → X is
an isomorphism, i.e., IX/S → IY /S ×Y X is a monomorphism of group stacks.
See e.g. [SP, Tag 050P].

Remark A.2. Let X be an Artin stack over S with G-action and denote
by X = [X/G] the quotient stack. Applying Remark A.1 to the morphisms
X ↠ X and X→ BG, we get the cartesian squares of group stacks over X

X IX/S X

X IX/S ×XX G×SX,

where IX/X ≃ X since X ↠ X is representable and the right-hand vertical
arrow is the identity section. For every S-scheme A and every A-valued point
x of X, this gives rise to an exact sequence of group algebraic spaces over A

1→ AutX(x) → AutX(x)
αA
Ð→ GA (A.3)

where GA ∶= G×S A denotes the fibre of G over x.

Definition A.4. Let X be an Artin stack over S with G-action. For any
scheme A and every A-valued point x of X, the G-stabilizer (or stabilizer of
the G-action) at x is an fppf sheaf of groups StGX(x) defined as the cokernel
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of the homomorphism AutX(x) ↪ AutX(x). Thus we have a short exact
sequence

1→ AutX(x) → AutX(x) → StGX(x) → 1 (A.5)
of sheaves of groups over A. Note that StGX(x) can be regarded as a subgroup
of GA, since it is the image of αA ∶ AutX(x) → GA.

Remark A.6. For a field-valued point x ∶ Spec(k(x)) →X, the G-stabilizer
StGX(x) is a group algebraic space. This follows from [SGA3, Exp. V,
Cor. 10.1.3], since in this case AutX(x) is flat over Spec(k(x)). Since X has
separated diagonal, StGX(x) is moreover a group scheme by [SP, 0B8F].

Remark A.7. WhenX has trivial stabilizers (i.e., is an algebraic space), then
the G-stabilizer StGX(x) at a point x is nothing else than the automorphism
group AutX(x) of the quotient stack X = [X/G].

Remark A.8. Let X be a derived Artin stack locally of finite type over k
with G-action. For any field-valued point x of X, the G-stabilizer of X at x
is defined to be the G-stabilizer of the classical truncation Xcl at x.

Remark A.9. Let X be an Artin stack over S with G-action. Let A be
an S-scheme and x an A-valued point of X. From the short exact sequence
(A.5) we see that the induced morphism BAutX(x) → BAutX(x) is a StGX(x)-
torsor, where X = [X/G]. Moreover, there is a commutative diagram

BAutX(x) X

BAutX(x) X

where the right-hand arrow is a G-torsor. In particular, we find that there is
a canonical StGX(x)-action on the group algebraic space AutX(x), and the
canonical monomorphism

BAutX(x) ↪X

is equivariant with respect to the StGX(x)-action on the source and G-action
on the target.

Notation A.10. We denote by a(x)∨ the dual Lie algebra of the group
algebraic space AutX(x) over A, i.e.,

a(x)∨ = e∗Ω1
AutX(x)/A

where e ∶ A → AutX(x) is the identity section. The StGX(x)-action on
AutX(x) (Remark A.9) descends to a(x)∨.

A.2. Fixed points.

Definition A.11. Let X be an Artin stack over S with G-action. The
G-fixed locus XG ⊆ X is the locus where the canonical homomorphism of
group algebraic spaces over X

IX ×
X/S

X → G×
S
X (A.12)
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is surjective8, where X = [X/G]. In other words, let A be an S-scheme and
x ∈ X(A) an A-point, and consider the homomorphism of group algebraic
spaces over A (A.3)

αA ∶ AutX(x) → GA

obtained by base changing (A.12) along x ∶ A→X. Then x belongs to the
fixed locus XG if and only if αA admits a section after base change along
some fppf cover A′↠ A.

Remark A.13. For an A-point x of X, recall that the image of αA is the
G-stabilizer StGX(x) at x (Definition A.4). Thus, the fixed locus XG is the
locus of points x where the inclusion StGX(x) ⊆ GA is an equality.

Question A.14. Is the inclusion XG →X a closed immersion?

We will see that this holds for algebraic spaces (Proposition A.23). It also
“almost” holds for split torus actions on 1-Artin stacks with finite stabilizers:

Proposition A.15. Suppose G acts on a 1-Artin stack X locally of finite
type over k with finite stabilizers. If G has connected fibres over S, then
the subset ∣XG∣ ⊆ ∣X ∣ is closed. In particular, there exists a reduced closed
substack XG

red of X such that ∣XG
red∣ = ∣XG∣.

Proof. The subset ∣XG∣ is the locus of points x ∈ ∣X ∣ for which StGX(x) is equal
to Gk(x) = G×S Spec(k(x)). Since Gk(x) is connected (hence irreducible, see
[SGA3, Exp. VIA, Cor. 2.4.1]), this is equivalent to the condition that
dim(StGX(x)) = dim(Gk(x)). Since X has finite stabilizers, the short-exact
sequence (A.5) shows that dim(StGX(x)) = dim(AutX(x)). Note that AutX(x)
is the fibre π−1(x) of the projection of the inertia stack π ∶ IX → X of
X = [X/G], so closedness of the locus where dim(AutX(x)) = dim(Gk(x))

follows from the upper semi-continuity of the function x↦ dim(π−1(x)) on
∣X∣ (see [Ryd2], [SP, Tag 0DRQ]). �

Definition A.16. Let the notation be as in Proposition A.15. The Artin
stack XG

red is called the reduced G-fixed locus of X. If X is a derived 1-Artin
stack with finite stabilizers and G-action, then its reduced G-fixed locus is
the reduced G-fixed locus of Xcl (with the induced G-action).

A.3. Homotopy fixed points. For classical stacks, the following definition
is studied in [Rom2, Rom3, Rom4].

Definition A.17. Let X be a derived Artin stack over S with G-action.
The homotopy fixed point stack of X is the stack of G-equivariant morphisms
S →X, i.e.,

XhG
∶= MapGS (S,X),

where S is regarded with trivial G-action. We write ε ∶= εGX ∶ XhG → X for
the canonical morphism.

8i.e., an effective epimorphism of fppf sheaves
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Remark A.18. Equivalently, XhG can be described as the Weil restriction
of [X/G] → BG along BG → S. More explicitly, it fits into the following
homotopy cartesian square:

XhG MapS(BG, [X/G])

S MapS(BG,BG).
idBG

In other words, XhG classifies sections of [X/G] → BG.

Remark A.19. Yet another way to describe XhG is that it classifies group-
theoretic sections of the homomorphism of group algebraic spaces over X

IX ×
X
X → G×

S
X

where X = [X/G]. Indeed, there is a cartesian square

XhG GrpX(G×SX,IX ×XX)

X GrpX(G×SX,G×SX)

ε

id

where GrpX(−,−) denotes the sheaf of group homomorphisms over X. See
e.g. [Rom4, Lem. 4.1.2].

In terms of points, we see that for any S-scheme A a lift of an A-point
x of X along ε ∶ XhG → X amounts to a group-theoretic section of the
homomorphism (A.3)

αA ∶ AutX(x) → GA

of group algebraic spaces over A. Comparing with Definition A.11, we find
in particular that ε ∶XhG →X factors through the fixed locus XG ⊆X.

Remark A.20. Informally speaking, we can think of a point of XhG as a
point x of X together with a collection of “fixings”, i.e., for every point g of
G an isomorphism g ⋅ x ≃ x, together with a homotopy coherent system of
compatibilities between them (with respect to the group operation).

For the next statement, we recall the notion of formal properness from [HLP].

Remark A.21. The classifying stack BG is formally proper over S when
either (a) S is the spectrum of a field and G is reductive (see [HLP, Ex. 4.3.5]);
or (b) S is noetherian and G is linearly reductive (see Prop. 4.2.3 and
Thm. 4.2.1 in [HLP]).

Theorem A.22 (Halpern-Leistner–Preygel). Let X be a derived Artin stack
locally of finite type over S with G-action. If BG is formally proper over
S and X is 1-Artin with affine stabilizers, then the derived stack XhG is
1-Artin with affine stabilizers.

Proof. Follows from [HLP, Thm. 5.1.1, Rmk. 5.1.3] in view of Remark A.18.
�
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For G of multiplicative type (and X classical), a different proof of Theo-
rem A.22 was given in [Rom3, Thm. 1].

A.4. Properties. We record some general properties of the constructions
XG and XhG. Our main interest is in the properties of the canonical
morphisms XG ↪X and ε ∶XhG →X.

We begin by comparing XG and XhG in the case of algebraic spaces. This is
probably well-known.

Proposition A.23. Let X be an algebraic space over S with G-action.
Assume either that S is the spectrum of a field, or that G is of multiplicative
type. Then there is a canonical isomorphism XG ≃XhG over X. Moreover,
the morphisms XG →X and ε ∶XhG →X are closed immersions.

Proof. By [CGP, Prop. A.8.10], ε ∶XhG →X is a closed immersion. There-
fore, it will suffice to show that the canonical morphism (Remark A.19)

XhG
→XG (A.24)

is invertible. Since XG →X and XhG →X are both monomorphisms, it will
suffice to show that (A.24) is surjective on A-valued points (for all S-schemes
A). But since X has trivial stabilizers, for every A-valued point x ∶ A→X
the canonical homomorphism AutX(x) → GA is surjective if and only if
it is invertible (see Remark A.7). In particular, if x belongs to XG then
AutX(x) → GA already admits a section over A. �

Let us now turn our attention to the morphism ε ∶XhG →X. In general, it
is not a closed immersion or even a monomorphism (Example A.29). We
begin with the following statement (we thank M. Romagny for providing the
idea for the proof).

Proposition A.25. Suppose S is locally noetherian and G has smooth and
connected fibres over S. Let X be a derived 1-Artin stack with G-action,
which is locally of finite type over S with finite stabilizers. Then the canonical
morphism ε ∶XhG →X is essentially proper9.

Proof. Since (−)hG commutes with classical truncation, we may assume
that X is classical. Since ε is separated and locally of finite presentation
[Rom3, Rom4], it will suffice to show that for every discrete valuation ring
R with fraction field K and every commutative solid arrow diagram

Spec(K) XhG

Spec(R) X,

ε

9I.e., it is locally of finite type and satisfies the valuative criterion for properness. Thus
essentially proper + quasi-compact ⇒ proper. See [EGA, IV4, Rem. 18.10.20].
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there exists a dashed arrow making the total diagram commute. This amounts
to showing that for every R-point x of X and any group-theoretic section
σK of the morphism αK ∶ AutX(xK) → GK (A.3), there exists a section

σ ∶ G→ AutX(x)

of αR ∶ AutX(x) → GR which lifts σK .

Since X has finite stabilizers, αR is quasi-finite (since its kernel AutX(x) is
quasi-finite). Since αR is affine (as a morphism between affine schemes, by
[Ray, IX, Lem. 2.2]), the section σK is a closed immersion. Let Γ ⊆ AutX(x)
denote the schematic closure of σK(GK) ⊆ AutX(xK) in AutX(x). This
is a closed subgroup of AutX(x) (see [Rom1, §4.1]). We claim that the
homomorphism of group R-schemes

Γ ⊆ AutX(x) → GR (A.26)

is invertible. Since it is quasi-finite, separated and birational (because over K
it is the isomorphism ΓK ⊆ AutX(xK) → GK) with normal target, Zariski’s
main theorem implies that (A.26) is an open immersion.

Let m ⊆ R denote the maximal ideal. The base change αR/m has finite kernel,
hence is finite. Thus (A.26) base changes to a finite open immersion (i.e.,
an inclusion of connected components) over R/m. Since GR/m is irreducible
and ΓR/m is nonempty, this shows that (A.26) is bijective over R/m. Since
it is also an isomorphism over the fraction field K, it follows that (A.26) is
invertible as claimed.

We now obtain the desired section σ by taking the composite

σ ∶ GR
∼
←Ð Γ ⊆ AutX(x)

which is a group homomorphism by construction. �

For torus actions on Deligne–Mumford stacks, we see that ε is a closed
immersion:

Proposition A.27. Assume that G = T is a torus and S is locally noetherian.
Let X be a derived Deligne–Mumford stack with T -action, quasi-separated
and locally of finite type over S with separated diagonal. Then the canonical
morphism ε ∶XhT →X is a closed immersion.

Proof. Since (−)hT commutes with classical truncation, we may assume
that X is classical. By Proposition A.25, it is enough to show that ε
is a locally closed immersion. For this we may argue as in the proof of
[AHR, Thm. 5.16]10 to reduce to the case where S is the spectrum of an
algebraically closed field and X is affine (note that the first statement of
[AHR, Prop 5.20] only uses connectedness of the group). Then the claim
follows from Proposition A.23. �

10Note that loc. cit. claims to show that ε is a closed immersion, but in fact the
argument only shows it is locally closed due to the use of their generalized Sumihiro
theorem. We thank A. Kresch for pointing this out to us.
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Remark A.28. If G is of multiplicative type and X is 1-Artin with affine
and finitely presented diagonal, then ε ∶XhG →X is representable, separated
and locally of finite presentation ([Rom3, Thm. 1]). This is generalized
further in the forthcoming work [Rom4].

Example A.29 (Romagny). If G acts on a 1-Artin stack X with finite
stabilizers, the canonical morphism ε ∶XhG →X is not generally a monomor-
phism or even unramified. The following example appears in [Rom4], who
checks that ε is not a monomorphism. Here we show the stronger statement
that, in the same example, ε is not even unramified.

Let S be the spectrum of an algebraically closed field k of characteristic
p > 0 and let G = T be the rank one torus Gm,k. Let αp denote the group
k-scheme fitting in the short-exact sequence

0→ αp →Ga,k
F
Ð→Ga,k → 0

where F sends x ↦ xp. The latter is Gm-equivariant with respect to the
scaling action with weight 1 on the source and weight p on the target, so
αp inherits a Gm-action by scaling. This gives rise to a Gm-action on the
classifying stack X = Bαp, and we claim that the morphism ε ∶XhGm →X
is ramified.

By Corollary A.37 it will suffice to show that the dual Lie algebra a(x)∨

of AutX(x) has nonzero moving part, where x ∶ Spec(k) ↠ X = Bαp is the
quotient morphism. But AutX(x) = αp and a(x)∨ is the Lie algebra of αp,
which is H0 of the cotangent complex of αp (restricted along the identity
section), which since dF = 0 we compute (Gm-equivariantly) as

O(−1)
⊕O(−p)

[1]

where O(i) is the structure sheaf with weight i scaling action.

A.5. Deformation theory of homotopy fixed points.

Remark A.30. When BG is formally proper over S (see [HLP] and Re-
mark A.21), the functor f∗ ∶ Dqc(S) → Dqc(BG) of inverse image along
f ∶ BG→ S admits a left adjoint

f+ ∶ Dqc(BG) →Dqc(S),

see [HLP, Prop. 5.1.6] which is computed by f+(F ) = f∗(F
∨)∨ on perfect

complexes F . The same holds for any base change of f . Under the identifica-
tion Dqc(BG) ≃ DG

qc(S), f∗ and f+ are the functors of (derived) G-invariants
and coinvariants, respectively.

Corollary A.31. Suppose that BG is formally proper over S. Then the
cotangent complex of XhG is given by

LXhG/S ≃ f̄+e
∗
(L[X/G]/BG) (A.32)

where e ∶ XhG × BG ≃ [XhG/G] → [X/G] is induced by ε ∶ XhG → X and
f̄ ∶XhG ×S BG→XhG is the projection.
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Proof. This is the formula for the cotangent complex of a Weil restriction
given in [Lur2, Prop. 19.1.4.3], which generalizes to our formally proper
situation as in [HLP, Prop. 5.1.10]. �

In other words, Corollary A.31 states that LXhG/S is given by the (derived)
G-coinvariants of the pull-back to XhG of the cotangent complex LX/S

(regarded with its canonical G-action). Dually, the tangent complex is given
by the (derived) G-invariants (= G-fixed part) of the pull-back to XhG of
the tangent complex TX/S . In the linearly reductive case, we do not need to
distinguish between invariants and coinvariants.

Lemma A.33. Suppose G is linearly reductive. Let X be a locally noetherian
Artin stack over S and write f ∶X ×S BG→X for the projection. Then there
is a canonical isomorphism

f∗(F ) → f+(F )

for every quasi-coherent complex F ∈ Dqc(X ×S BG).

Proof. We will show that the canonical morphism

f∗f∗(F )
counit
ÐÐÐ→F

unit
ÐÐ→ f∗f+(F )

is invertible; the claimed isomorphism will then follow by applying ∗-inverse
image along the quotient morphism S ↠ BG. We may simplify notation by
replacing G by its base change G×SX. Since all functors involved commute
with ∗-inverse image (f∗ satisfies base change because f is universally of
finite cohomological dimension, and f+ satisfies base change by adjunction,
see e.g. [HLP, Lem. 5.1.8]), we may use fpqc descent to reduce to the case
where X is a noetherian scheme. Since ∗-inverse image to residue fields is
jointly conservative (by noetherianness), we may then further assume that X
is the spectrum of a field k. Since G is linearly reductive (and embeddable),
BG is perfect (see e.g. [Kha4, Thm. 1.42]) so we may assume that F is a
perfect complex (again, f∗ preserves colimits because f is universally of finite
cohomological dimension). Note that f∗ is t-exact (since f is flat), f∗ is
t-exact (since G is linearly reductive), and f+ is t-exact on perfect complexes
(since f+(−) ≃ f∗(−

∨)∨). Thus we may also reduce to the case where F
is a (discrete) coherent sheaf. In other words, we are reduced to showing
that for every finite-dimensional vector space V over k with G-action, the
canonical morphism V G ⊆ V ↠ VG (from G-invariants to G-coinvariants)
is invertible, which is well-known (for example, this follows easily from the
characterization of linear reductivity in [Alp1, Prop. 12.6(vi)]). �

Definition A.34. Suppose G is linearly reductive. Let X be a locally
noetherian Artin stack over S (with trivial G-action). Given a quasi-coherent
sheaf F ∈ Dqc(X ×S BG) ≃ DG

qc(X), the fixed part of F is defined as
F fix ∶= f∗f∗(F ) and the moving part of F is the cofibre of the canonical
morphism F fix →F . By Lemma A.33 the latter admits a (natural) retraction
F → f∗f+(F ) ≃ f∗f∗(F ) = F fix. Thus the exact triangle

F fix
→F →Fmov
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is split, i.e., there are canonical isomorphisms F ≃ F fix ⊕ Fmov, natural
in F . (These definitions are compatible with Definition 5.2 in case G is
diagonalizable.)

Corollary A.35. Suppose G is linearly reductive. Let X be a locally noe-
therian Artin stack over S with G-action. If LX is perfect of Tor-amplitude
⩽ n, then so is LXhG. In particular, if X is smooth (resp. quasi-smooth)
over S, then so is XhG.

Proof. Since G is linearly reductive, the functor of derived G-invariants is
t-exact on quasi-coherent complexes. �

Corollary A.36. Suppose G is linearly reductive. Let X be a locally noe-
therian Artin stack over S with G-action. There is a canonical identification
of exact triangles in DG

qc(X
hG) ≃ Dqc(X

hG ×S BG)

ε∗LX LXhG LXhG/X

ε∗LX (ε∗LX)fix (ε∗LX)mov[1].

Corollary A.37. Suppose G is linearly reductive. Let X be a locally noe-
therian Artin stack over S with G-action. Then the morphism ε ∶XhG →X
is formally unramified if and only if, for every geometric point x of XhG, the
dual Lie algebra a(x)∨ of AutX(x) has vanishing moving part (with respect
to the G-action defined in Notation A.1011).

Proof. Recall that formal unramifiedness is the condition that H0(LXhG/X) =

Ω1
XhG

cl /Xcl
vanishes. We may therefore replaceX by its classical truncation. By

Remark A.9, the canonical monomorphism BAutX(x) ↪X is G-equivariant.
The relative cotangent complex of the latter vanishes, so that there is a
canonical isomorphism

x∗LX ≃ x∗LBAutX(x) ≃ a(x)∨[−1]

in DG
qc(Spec(k(x))) (where x also denotes the morphism Spec(k(x)) →

BAutX(x) by abuse of notation). By Corollary A.36 we get a canonical
isomorphism

x∗LXhG/X ≃ x∗(LX)
mov

[1] ≃ (a(x)∨)mov,

whence the claim. �

A.6. Reparametrized homotopy fixed points for torus actions.

11By abuse of notation, we identify x with its image ε(x) in X. Since the latter belongs
to the fixed locus XG (Remark A.19), the StGX(x)-action defined in Notation A.10 is a
G-action.
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Remark A.38. Let ρ ∶ G′↠ G be a surjective homomorphism between group
schemes over S. Given an S-scheme A and an S-morphism x ∶ A → XhG′ ,
consider the commutative square

Aut[X/G′](x) G′
A

Aut[X/G](x) GA

ρ (A.39)

of group schemes over A.

(i) Note that the square is cartesian. Indeed, the induced map on kernels
of the horizontal maps may be identified with the identity of AutX(x).

(ii) Since the upper horizontal and right-hand vertical arrows are surjective,
the same holds for the lower arrow. This shows that x factors through
the fixed locus XG. Allowing x to vary, we see that the canonical
morphism εG

′
X ∶XhG′

→X factors through

XhG′
→XG. (A.40)

Definition A.41. Let T be a split torus over S. A reparametrization of T
is an isogeny ρ ∶ T ′↠ T where T ′ is a split torus.
Remark A.42. Note that the category of reparametrizations of T (where
the morphisms are T -morphisms) is filtered. In fact, there is a bijection
between morphisms of reparametrizations T ′′ ↠ T ′ (say of rank r) and
diagonalizable r×r-matrices (d1, . . . , dr), di ∈ Z, so the category is equivalent
to a poset.
Definition A.43. Let G = T be a split torus over S. Let X be an Artin
stack over S with T -action. The reparametrized homotopy fixed point stack
XrhT →X is defined as the filtered colimit

XrhT
∶= lim
Ð→
ρ

XhT ′

over all reparametrizations ρ ∶ T ′↠ T .
Proposition A.44. Let G = T be a split torus of rank r over S acting on a
quasi-separated Deligne–Mumford stack X locally of finite presentation over
S.

(i) For any reparametrization T ′↠ T , the induced map

XhT
→XhT ′ (A.45)

is an open and closed immersion.
(ii) There is a canonical decomposition

XrhT
= ⊔

ρ
XrhT
ρ

over reparametrizations ρ ∶ T ′ ↠ T , where XrhT
ρ is the open and

closed substack
XrhT
ρ =XhT ′

∖ ⋃
ρ′∶T ′′↠T

XrhT ′′
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where ρ′ varies over reparametrizations that factor ρ via some non-
identical reparametrization T ′↠ T ′′.

(iii) If X is quasi-compact, then XrhT is quasi-compact. In particular, we
have XrhT =XhT ′ for some reparametrization ρ ∶ T ′↠ T .

Proof. (i): For any reparametrization T ′↠ T , the induced map

XhT
→XhT ′

is formally étale, since the relative cotangent complex vanishes by Corol-
lary A.36. Moreover, (A.45) is locally of finite presentation, hence étale, at
least if X has affine and finitely presented diagonal, see [Rom3]. If X is
quasi-separated, Deligne–Mumford and locally of finite presentation over S,
then (A.45) is also a closed immersion (Proposition A.27). Thus in that case
it is an open and closed immersion.

(ii): follows from (i).

(iii): Suppose X is quasi-compact. The closed substacks XhT ′ stabilize as
ρ ∶ T ′↠ T varies among reparametrizations. Indeed, recall that each XhT ′

is a closed substack of X (Proposition A.27) and the colimit lim
Ð→ρ

XhT ′ over
reparametrizations ρ ∶ T ′ ↠ T is also closed in X by Theorem A.48 and
Proposition A.15. In particular, it is quasi-compact because X is quasi-
compact. �

Remark A.46. We have the following more explicit description of the open
and closed substack XrhT

ρ , for a given reparametrization ρ ∶ T ′ ↠ T . Let
x be a geometric point of XrhT . Then we have x ∈ XrhT

ρ if and only if ρ
is identified with the reparametrization αA ∶ AutX(x)0

red → TA, where the
source is the reduced identity component of AutX(x). Indeed, the group-
theoretic section of Aut[X/T ′](x) → T ′ gives rise to a group homomorphism
T ′ → Aut[X/T ](x) from a reduced and connected algebraic group, which thus
factors through Aut[X/T ](x)

0
red.

Remark A.47. For T a rank one torus over a field acting on a Deligne–
Mumford stack, the reparametrized homotopy fixed stack XrhT is used as the
definition of T -fixed locus in [AHR, Def. 5.25] (see also [Kre, Prop. 5.3.4]).

A.7. Fixed vs. reparametrized homotopy fixed. In this subsection
our goal is to compare the fixed locus XG with the homotopy fixed point
stack XhG. The two constructions are typically different, as ε ∶ XhG → X
may not be a monomorphism (Example A.29). But even if we just consider
the set-theoretic image of XhG in ∣X ∣, it will typically not coincide with
∣XG∣. In the case where G = T is a torus, we can somewhat bridge the gap
by replacing XhT by its reparametrized version XrhT . In this case, we will
prove:
Theorem A.48. Suppose G = T is a split torus acting on a 1-Artin stack X
over S with affine stabilizers. Then the morphisms (A.40) induce a canonical
surjection

XrhT
↠XT
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over X.

Proof. As ρ ∶ T ′↠ T varies, the canonical morphisms XhT ′ →XT (A.40) are
compatible by construction. Thus there is a canonical morphism

XrhT
→XT .

For surjectivity, let x be a geometric point of XT . Then we have the canonical
surjection Aut[X/T ](x) ↠ Tk(x) (A.5). By [Bor2, Cor. 1 of Prop. 11.14], there
exists a (split) subtorus of Aut[X/T ](x) on which this restricts to an isogeny.
By [SGA3, Exp. VIII, Cor. 1.6], we may lift this to an isogeny ρ ∶ T ′ → T
over S.

Using the cartesian square (A.39) (taking now A = Spec(k(x))), we see
that in order to lift x to XhT ′ it is enough to show that Aut[X/T ](x) →
Tk(x) becomes surjective after base change along ρ. But ρ factors through
Aut[X/T ](x) → Tk(x) by construction, so this is clear. �

Corollary A.49. Suppose G = T is a split torus acting on a quasi-compact 1-
Artin stack X over S with affine stabilizers. Then there exists a reparametriza-
tion ρ ∶ T ′↠ T such that the morphism (A.40) induces a surjection

XhT ′
red ↠XT

red

of reduced 1-Artin stacks (where the target is the reduced T -fixed locus, see
Definition A.16). In particular, the set-theoretic image of ε ∶ XhT ′ → X
coincides with ∣XT ∣ ⊆ ∣X ∣.

Remark A.50. Let X be a derived 1-Artin stack over S with T -action.
Let f ∶ Z →X be a T -equivariant finite unramified morphism satisfying the
following properties:

(i) There exists some reparametrization T ′ ↠ T such that the induced
T ′-action on Z is trivial.

(ii) The conormal sheaf NZ/X ∈ DT ′
qc(Z) ≃ Dqc(Z ×BT ′) has no T ′-fixed

part.

(For example, this applies to ε ∶XhT ′ →X in the situation of Corollary A.49.)
Then the canonical morphism f∗LX → LZ in DT ′

qc(Z) ≃ Dqc(Z×BT
′) induces

an isomorphism LZ ≃ (LZ)
fix ≃ (f∗LX)fix (where the first isomorphism is

because LZ has no moving part by (i), and the second is because the cofibre
LZ/X has no fixed part by (ii)). In particular, if X is smooth (resp. quasi-
smooth) then so is Z.

A.8. Edidin–Rydh fixed vs. reparametrized homotopy fixed.

Definition A.51. Let G = T be a split torus of rank r over S acting on a
1-Artin stack X over S with finite stabilizers. We define XsT as the stack over
X whose A-valued points, for an X-scheme x ∶ A→X, are closed subgroups
of Aut[X/T ](x) which are affine and smooth over A with connected fibres of
dimension r.
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Remark A.52. The definition of XsT is a variant of the construction in [ER,
Prop. C.5] of, for a 1-Artin stack X, a stack Xmax → X that can be thought
of as the locus of points with maximal-dimensional stabilizer. Whenever
XsT ≠ ∅, then we have

XsT
= Xmax

×
X
X

where X = [X/T ].

In this subsection we will prove:

Theorem A.53. Let G = T be a split torus over S. Let X be a tame Deligne–
Mumford stack which is quasi-separated and locally of finite presentation over
S with T -action. Then there is a canonical isomorphism

XrhT
≃XsT

over X.

Since XrhT is a closed substack of X (see Proposition A.44), Theorem A.53
shows that XsT is also a closed substack of X and in particular is Deligne–
Mumford. When X is noetherian and [X/T ] admits a good moduli space
in the sense of [Alp1], this follows from [ER, Prop. C.5]. We begin with the
following generalization to our situation:

Theorem A.54. Let X be a 1-Artin stack over S with finite diagonal and
tame stabilizers and T -action. Then the morphism XsT → X is a closed
immersion. In particular, XsT is 1-Artin with finite diagonal.

Proof. Note that XsT is stable under base change by étale representable
T -equivariant morphisms p ∶ Y →X, i.e., the induced morphism

Y sT
→XsT

×
X
Y

is an isomorphism. Equivalently, let us show that for every Y -scheme
y ∶ A→ Y the map of sets

Y sT
(A) →XsT

×
X
Y (A) (A.55)

is bijective. Since p is étale and representable, the morphism IY → IX ×X Y

(where Y = [Y /T ]) is an open immersion, so in particular AutY(y) →
AutX(p(y))×X Y is an open immersion. This shows that (A.55) is injec-
tive, so it remains to show that surjectivity. Let H be a closed subgroup of
AutX(x)×X Y which is smooth and affine over A with connected r-dimensional
fibres. We claim that the open immersion of group schemes over A

H ×
AutX(x)×X Y

AutY(y) →H

is invertible (and hence H lifts to a closed subgroup of AutY(y) as desired).
This can be checked over points of A, so we may assume that A is a field.
Now by [SP, Tag 047T], this morphism is also a closed immersion, hence an
inclusion of connected components. But H is connected, so we are done.

Since X has finite tame (hence linearly reductive) stabilizers, it follows
from the short exact sequence (A.5) that X = [X/T ] has linearly stabilizers.
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Therefore we may apply the local structure theorem of [AHHR, Thm. 1.11]
to find for every point x of X an affine étale neighbourhood Y → X of x
where Y is a quotient [V /GLn] with V affine. By base change this gives
a T -equivariant affine étale neighbourhood Y → X. Since the question is
étale-local on X and because XsT is stable under the base change Y → X,
we may therefore replace X by Y , so that the quotient X = [X/T ] is now a
global quotient of an affine scheme by GLn. In this case, either XsT = ∅ or
the claim follows by combining Remark A.52 and [ER, Prop. C.5]. �

Proof of Theorem A.53. Recall that XrhT and XsT are closed substacks of
X (see Proposition A.44 and Theorem A.54). Let us first show that there is
an inclusion XsT ⊆XrhT . Let x ∶ A→X be an A-valued point, where A is an
S-scheme, and let G ⊆ AutX(x) be a closed subgroup which is smooth affine
over A with r-dimensional connected fibres. The composite homomorphism

G↪ AutX(x)
αA
Ð→ TA

is surjective over geometric points of A, since G has r-dimensional fibres and
the kernel is contained in AutX(x) which is quasi-finite. It follows that the
geometric fibres of G are tori of rank r (for every geometric point a of A,
by [Bor2, Cor. 1 of Prop. 11.14] the homomorphism Ga → Ta restricts to a
finite surjection on a maximal subtorus H, but then H = Ga because they
are smooth and connected of the same dimension).

Since G is smooth and affine with geometric fibres of constant reductive rank,
it follows from [SGA3, Exp. XII, Thm. 1.7(b)] that it admits a maximal
subtorus H ⊆ G in the sense of [SGA3, Exp. XII, Def. 1.3]. But then H = G
since we have Ha = Ga for every geometric point a of A and G and H
are flat over A. In particular G is a torus, which we may assume is split,
since this holds étale-locally on A by [Con, B.3.4] (and XsT and XrhT are
subsheaves of the étale sheaf X). Now T ′ ∶= G→ TA is a reparametrization.
Using the cartesian square (A.39), we get a group-theoretic section of the
homomorphism Aut[X/T ′](x) → T ′A, whence the desired lift of x ∶ A → XsT

to XrhT .

It remains to show that the inclusion XsT ⊆XrhT is an effective epimorphism.
Take a scheme A and an A-valued point x ∶ A → XrhT which belongs to
the open and closed substack XrhT

ρ for some reparametrization ρ ∶ T ′↠ T
(Proposition A.44). This point corresponds to a group-theoretic section s of
αA ∶ Aut[X/T ′](x) → T ′A. This is a closed immersion since αA is separated (as
a morphism between quasi-affine schemes). We will show that the composite
homomorphism

s′ ∶ T ′A
s
Ð→ Aut[X/T ′](x) → Aut[X/T ](x)

is a closed immersion, and hence defines an A-point of XsT . Since the
second morphism is finite, the composite s′ is proper, so it is enough to
show that it is a monomorphism. This can be checked over geometric points
a of A. The base change s′a yields a reparametrization T ′a ↠ Ta which by
Remark A.46 is isomorphic to the reparametrization Aut[X/T ](xa)

0
red ↠ Ta.
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Then T ′a → Aut[X/T ](xa)
0
red, as a morphism between abstractly isomorphic

reparametrizations of Ta, must itself be an isomorphism (by Remark A.42).
In particular, s′a is a closed immersion. �
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