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Abstract. We prove a general form of the statement that the cohomol-
ogy of a quotient stack can be computed by the Borel construction. It
also applies to the lisse extensions of generalized cohomology theories
like motivic cohomology and algebraic cobordism. We use this to prove a
(higher) equivariant Grothendieck–Riemann–Roch theorem, comparing
Borel-equivariant G-theory and equivariant Chow groups. Finally, we
give a Bernstein–Lunts-type gluing description of the ∞-category of
equivariant sheaves on a scheme X, in terms of nonequivariant sheaves
on X and sheaves on its Borel construction.
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Introduction

The formalism of Grothendieck’s six operations on (derived categories of)
étale sheaves can be extended to algebraic stacks (see [LZ, LO]). Specialized
to quotient stacks, this affords simple definitions of equivariant (co)homology.
For example, if X is a variety with an action of an algebraic group G, we may
define the G-equivariant Borel–Moore homology of X (with coefficients in a
commutative ring Λ) as the hypercohomology of the complex f !(ΛBG), where
ΛBG is the constant sheaf on the classifying stack BG and f ∶ [X/G]→ BG
is the projection from the quotient stack.

Classically, equivariant cohomology and (Borel–Moore) homology are defined
via algebraic analogues of the Borel construction [Bor]. It is well-known that
the two approaches should agree. In this paper, we prove a very general form
of such a comparison that also applies to generalized motivic cohomology
theories, and study the consequences for equivariant intersection theory.
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2 A.A. KHAN AND C. RAVI

On first pass, let us formulate the result for Betti or ℓ-adic sheaves. Given
a locally of finite type Artin stack X over a field k, let D(X) denote the
∞-category of Betti or ℓ-adic sheaves on X. If G is an affine algebraic group
over k acting on X, let H∗G(X) and HBM,G

−∗ (X) denote the hypercohomology
groups of f∗f∗(ΛBG) and f∗f !(ΛBG), respectively (where Λ denotes the
constant sheaf Q or Qℓ, in the Betti or ℓ-adic cases respectively). We regard
the Borel construction as a G-equivariant ind-scheme U∞ = {Uν}ν , e.g. for
G = GLn this is the infinite Grassmannian Grn,∞ of rank n subspaces (see
Sect. 3 for details). Then we claim (see Corollaries 5.2 and 5.4):

Theorem A. Suppose G acts on a finite-dimensional Artin stack X of finite
type over k. Then for every integer n ∈ Z there are canonical isomorphisms

Hn
G(X) ≃ Hn(X G×U∞),

HBM,G
n (X) ≃ HBM

n (X
G×U∞).

Here we have written X ×GU∞ for the quotient ind-stack [(X ×U∞)/G], and
we have (essentially by definition)

Hn(X G×U∞) ≃ lim←Ð
ν

Hn(X G×Uν),

HBM
n (X

G×U∞) ≃ lim←Ð
ν

HBM
n+2dν(X

G×Uν)(−dν),

where dν = dim(Uν/G).
For X a quasi-projective k-scheme on which G acts linearly, each X ×GUν is
a scheme because G acts freely on Uν . The right-hand sides of Theorem A
are often taken as definitions of equivariant cohomology and Borel–Moore
homology (see e.g. [Lus, §1]). They have also been considered in the case
where X itself is a stack, e.g. the moduli stack of objects in an abelian or
dg-category (see [Joy, §2.3]).

Our second main result provides a complete description of the ∞-category of
sheaves on a quotient stack. It relates D([X/G]) to the equivariant derived
category of Bernstein and Lunts (compare [BL, Def. 2.1.3]).

Theorem B. For every Artin stack X locally of finite type over k with
G-action, there is a cartesian square of ∞-categories

D([X/G]) D(X ×GU∞)

D(X) D(X ×U∞).

The ∞-category D(X ×G U∞) is the limit over ν of D(X ×G Uν). Thus
Theorem B asserts in particular that a sheaf on the quotient stack [X/G]
amounts to the data of:

(i) a sheaf G ∈D(X);
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(ii) a collection of sheaves Fν ∈D(X ×GUν) for every ν, with compatibility
isomorphisms Fν ∣X ×G Uν+1 ≃ Fν+1;

(iii) for every ν, an isomorphism G∣X×Uν ≃ Fν ∣X×Uν ;

and compatibilities between the isomorphisms of (ii) and (iii). See Corol-
lary 9.5. Note that, in contrast with [BL], we work with unbounded derived
categories.

To prove Theorem A, we will first consider the analogous statement at the
level of derived global sections. We will see (Theorem 3.7 and Corollary 4.1)
that for any sheaf F ∈D([X/G]), the canonical map

RΓ([X/G],F)→ lim←Ð
ν

RΓ(X G×Uν ,F)

is invertible, where the limit is a homotopy limit in the ∞-category of spectra.
The obstruction to passing from this statement to the analogous statement
on hypercohomologies,

Hi([X/G],F)→ lim←Ð
ν

Hi(X G×
S
Uν ,F),

is the vanishing of Milnor’s lim←Ð
1 term. We will show (Corollary 4.16) that

this obstruction vanishes when F is eventually coconnective with respect to
the cohomological t-structure (i.e., cohomologically bounded below).

As alluded to earlier, the main result of this paper is in fact an extension of
Theorem A to generalized cohomology theories such as motivic cohomology
(≈ higher Chow groups), algebraic cobordism, and (variants of) algebraic
K-theory. Similarly, we will prove a version of Theorem B for the stable
motivic homotopy category. In particular, we will see:

Theorem C. Let E ∈ SH(k)<∞ be a motivic spectrum which is eventually
coconnective for the homotopy t-structure. If G acts on an Artin stack X of
finite type over k with separated diagonal, there are canonical isomorphisms

Hi([X/G],E)[1e ] ≃ lim←Ð
ν

Hi(X G×
S
Uν ,E)[1e ]

for every i ∈ Z, where e is the characteristic exponent of the field k.

The work of Voevodsky, Ayoub, and Cisinski–Déglise provides the formalism
of six operations on the ∞-categories SH(S) of motivic spectra over schemes
S (see [Ayo, CD1]). Recently, this has been extended1 to algebraic stacks2
by various authors (see [RS, §2], [Kha2, App. A], [Cho], and [Kha5, §7]). We
may thus use the above approach with quotient stacks to define equivariant
Borel–Moore homology with coefficients in any motivic spectrum E ∈ SH(k):

HBM,G
s (X;E)(−r) ∶= πsRΓ([X/G], f !(E∣BG)(−r)),

1We are referring here to the lisse-extended variant, as opposed to the genuine theory
constructed in [KR]. For quotient stacks this corresponds to the difference between Borel-
equivariant and genuine-equivariant cohomology theories. An example of the latter is
algebraic K-theory, as discussed in Sect. 7.

2under very mild separation hypotheses, see Theorem 0.7
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where X is an algebraic space3 with G-action and r, s ∈ Z. On the other hand,
previous definitions via the Borel construction have long been considered in
the literature already, notably by B. Totaro [Tot], Edidin–Graham [EG1],
Deshpande [Des], Heller–Malagón-López [HML], and A. Krishna [Kri1]. We
will show that these approaches coincide at least at the spectrum level (see
Corollary 6.2). As stated above in Theorem C, we also have a comparison at
the level of homotopy groups when E is eventually coconnective.

For example, in the case of the motivic cohomology spectrum, this yields a
comparison of equivariant motivic Borel–Moore homology with the equivariant
higher Chow groups of Edidin–Graham (Corollary 6.5):

HBM,G
s+2n (X; Λmot)(−n) ≃ AG

n (X,s)⊗Λ (0.1)

for all n, s ∈ Z, where on the right-hand side are the G-equivariant higher
Chow groups of X [EG1, §2.7].

For E = KGL the algebraic K-theory spectrum in SH(k), we get the spectrum-
level computation of lisse-extended G-theory of a quotient stack (see Corol-
lary 7.4):

G◁([X/G]) ≃ lim←Ð
ν

G(X G×Uν). (0.2)

Of course, G◁(−) does not agree with the genuine extension of G-theory
to stacks. In fact, the right-hand side can often be identified with the
derived completion of the G-theory spectrum G([X/G]) with respect to
the augmention ideal in the representation ring of G, see [TVdB, CJ]. The
formula (0.2) means that

GG,◁(−) ∶= G◁([−/G]), GG,◁
s (−) ∶= πsG◁([−/G]), s ∈ Z, (0.3)

is Borel-type G-equivariant G-theory, and on algebraic stacks G◁(−) may be
regarded as a “globalization” thereof.4

Upon rationalization we deduce the following (higher) equivariant Grothendieck–
Riemann–Roch theorem (where (−)Q ∶= (−)⊗Q).

Theorem D (Equivariant GRR). Let k be a field, G an affine algebraic
group over k, and X a quasi-separated algebraic space of finite type over k
with G-action. Then for every integer s ∈ Z there is a canonical isomorphism

GG,◁
s (X)Q ≃ ∏

n∈Z
AG

n (X,s)Q,

where on the right-hand side are the G-equivariant higher Chow groups
of X [EG1, §2.7]. Moreover, this is compatible with equivariant proper
push-forwards and equivariant quasi-smooth Gysin pull-backs.

3Note that unlike in the Betti/étale cases, we avoid speaking of equivariant Borel–Moore
homology of general Artin stacks. That is because in the context of SH, no full account of
the construction of the !-functors for non-representable morphisms exists in the literature
at the time of writing (although see [Kha4, §4] for a sketch).

4Since KGL is not eventually coconnective (so that Theorem C does not apply), there
is a potential lim

←Ð

1 obstruction to computing GG,◁
s (X) as lim

←Ðν
Gs(X ×

GUν).
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For s = 0 the left-hand side becomes the completion of the (genuine) G-
equivariant G0 of X at the augmentation ideal IG, so we get

GG
0 (X)∧Q,IG

≃ ∏
n∈Z

AG
n (X)Q. (0.4)

This recovers the equivariant Grothendieck–Riemann–Roch theorem of Edidin–
Graham [EG2, Thm. 4.1]. A higher generalization of the latter was previously
obtained by A. Krishna for X smooth and quasi-projective [Kri2, Thm. 1.2].

Consider now the case of Voevodsky’s algebraic cobordism spectrum E =
MGL ∈ SH(k). For simplicity, we write for all n, s ∈ Z

MGLG
n (X) ∶= H

BM,G
2n (X;MGL)(−n)

and similarly for MGLn(X). When k is of characteristic zero, a geometric
model Ω∗(−) for “lower” algebraic bordism of quasi-projective k-schemes was
given by Levine and Morel [LM]; that it agrees with MGLn(X) was proven
by Levine [Lev]. For the (lower) G-equivariant algebraic bordism theory

ΩG,HML
n (X) ∶= lim←Ð

ν

Ωn+dν−g(X
G×Uν),

considered by J. Heller and J. Malagón-López [HML] (where dν = dim(Uν)
and g = dim(G)), we get surjections

MGLG
n (X)↠ ΩG,HML

n (X)
from G-equivariant motivic Borel–Moore homology with coefficients in MGL.
But as Theorem C does not apply, because MGL is not eventually coconnec-
tive, we do not know whether this map is bijective in general. We will see
that it is so with rational coefficients (see Theorem 8.4).

The issue seems related to the question, still open, of right-exactness of the
localization sequence

ΩG,HML
n (Z)→ ΩG,HML

n (X)→ ΩG,HML
n (U)→ 0 (0.5)

for G-invariant closed subschemes Z ⊆X with open complement U =X ∖Z.
In equivariant Chow homology the analogous property is obvious (see [EG1,
Prop. 5]) since any homogeneous component of AG

∗ (X) can be computed
using a single approximation Uν/G for large enough ν (as opposed to the
entire tower {Uν/G}ν). In the case of ΩG∗ (−), A. Krishna5 showed exactness
at the end (i.e., surjectivity of restriction to an open) and explained why
he did not believe exactness in the middle should hold (see Prop. 5.3 in
[Kri1] and the discussion just before). While Heller–Malagón-López claimed
that right-exact localization holds (see [HML, Thm. 20]), their argument
does not in fact prove exactness in the middle (this gap is well-known in the
area). We will show that MGLG

∗ (−) does satisfy right-exact localization (see
Theorem 8.12), and so therefore does ΩG,HML

∗ (−)Q:

Theorem E. Let k be a field of characteristic zero, G an affine algebraic
group over k, and X a quasi-projective k-scheme with linearized G-action.

5Krishna [Kri1] used a slightly different definition of ΩG
∗ (−), based on [Des]. It is shown

however in [HML, Rem. 14] that the two are isomorphic.



6 A.A. KHAN AND C. RAVI

Then for every G-invariant closed subscheme Z ⊆X with open complement
U =X ∖Z and every n ∈ Z, there are exact sequences

MGLG
n (Z)→MGLG

n (X)→MGLG
n (U)→ 0

and
ΩG,HML
n (Z)Q → ΩG,HML

n (X)Q → ΩG,HML
n (U)Q → 0.

0.1. Contents. We begin in Sect. 1 by recalling the lisse extension construc-
tion from [KR, §12]. Our first key result (Proposition 2.5) is proven in Sect. 2:
given a lisse-extended A1-invariant Nisnevich sheaf F , a stack X, and an
ind-stack U∞ over X satisfying appropriate hypotheses, it states that F (X)
can be computed as the limit of the pro-system F (U∞). This is inspired by
arguments extracted from [MV].

In Sect. 3 we specialize to X = [X/G] and U∞ = {X ×GUν}ν . Proposition 2.5
implies in this case that for a lisse-extended A1-invariant sheaf of spectra F ,
its value on a quotient stack [X/G] can be computed as the homotopy limit

F ([X/G]) ≃ lim←Ð
ν

F (X G×Uν).

Our next main technical results, contained in Sect. 4, deal with the question
of when we can pass to homotopy groups to get isomorphisms

πiF ([X/G]) ≃ lim←Ð
ν

πiF (X
G×Uν).

We will show that this is possible when F is the cohomology theory repre-
sented by a sheaf in an appropriate six functor formalism, using connectivity
estimates to establish the Mittag–Leffler condition; see Corollary 4.16.6

Finally, we will apply this to Betti/étale cohomology Sect. 5 (proving The-
orem A) and to generalized cohomology theories, i.e., cohomology theories
representable in the stable motivic homotopy category, in Sect. 6 (proving
Theorem C). This is applied in Sect. 7 to deduce equivariant Grothendieck–
Riemann–Roch (Theorem D). The implications for equivariant algebraic
(co)bordism are described in Sect. 8, which in particular contains the proof
of Theorem E.

Finally, Sect. 9 is dedicated to the proof of Theorem B.

0.2. Conventions on stacks.

0.2.1. The Nisnevich topology. Recall that the Nisnevich topology on schemes
is generated by families of étale morphisms (Yα → X)α such that the mor-
phism ∐α Yα →X is surjective on field-valued points (see e.g. [BH, App. A]).

A smooth morphism of schemes admits étale-local sections if and only if it is
surjective (see [EGA, IV4, Cor. 17.16.3(ii)]). Here is the Nisnevich analogue:

6In a previous version, we had claimed the same for arbitrary F . However, this was
based on a mistake in the formulation of Proposition 2.5.
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Lemma 0.6. Let f ∶ X → Y be a smooth morphism of schemes. Then the
following conditions are equivalent:

(i) The morphism f is surjective on field-valued points.

(ii) There exists a Nisnevich cover Y ′ ↠ Y such that the base change
X ×Y Y ′ → Y ′ admits a section.

Moreover, if Y is quasi-compact and quasi-separated, then Y ′ in (ii) can also
be taken to be affine.

Proof. (ii) Ô⇒ (i): We will show that for every field-valued point y ∶
Spec(κ) → Y , the base change X{y} = X ×Y Spec(κ) → Spec(κ) admits a
section. By base change, the condition implies that there is a Nisnevich cover
S ↠ Spec(κ) such that XS ≃ X{y} ×Spec(κ) S → S admits a section. Since
S ↠ Spec(κ) is surjective on field-valued points by definition, it admits a
section. The composition of the section Spec(κ) → S, the section S → XS ,
and the morphism XS →Xκ is then a section of X{y} → Spec(κ) as desired.

(i) Ô⇒ (ii): Let y ∶ Spec(κ) → Y be a point and x ∶ Spec(κ) → X a lift.
Since f ∶ X → Y is smooth, there exists by [EGA, IV4, 18.6.6(i), 18.5.17] a
morphism x̃ ∶ S → X extending x, where S is the henselization of Y at y.
Recall that S can be identified with the cofiltered limit of elementary étale
neighbourhoods7 of (Y, y). Since X is locally of finite presentation over Y ,
it follows that there exists an étale neighbourhood Y ′y → Y over y such that
the Y -morphism x̃ ∶ S →X factors through Y ′y →X. Then the disjoint union
Y ′ = ∐y Y

′
y ↠ Y over all field-valued point y is an étale morphism which

is surjective on field-valued points, i.e., a Nisnevich cover, with the desired
property. If Y is quasi-compact, then there is a finite subcover refining Y ′
(see e.g. [EHIK, Lem. 2.1.2]), so in particular we may take Y ′ quasi-compact.
We may then further replace Y ′ by a Zariski cover by an affine scheme. □

0.2.2. Stacks. We work with higher stacks throughout the paper. Thus a
stack is a presheaf of ∞-groupoids on the site of k-schemes that satisfies
hyperdescent with respect to the étale topology.

Let τ ∈ {ét,Nis} stand for either the étale or Nisnevich topology. We say a
morphism of stacks f ∶ X → Y admits τ -local sections if, for any scheme T
and any morphism t ∶ T → Y , there exists a τ -cover T ′ ↠ T such that the
base change X ×Y T ′ → T ′ admits a section.

A morphism f ∶X → Y is schematic if for every scheme V and every morphism
V → Y , the fibred product X ×Y V is a scheme. A stack X is (τ,0)-Artin if
it has schematic (−1)-truncated diagonal and there exists a scheme U and
an étale morphism U → X with τ -local sections. For τ = ét, these are the
algebraic spaces; for τ = Nis, these are the quasi-separated algebraic spaces
by [Knu, Chap. 2, Thm. 6.4].

For n > 0, a morphism f ∶X → Y is (τ, n−1)-representable if for every scheme
V and every morphism V → Y , the fibred product X ×Y V is (τ, n− 1)-Artin.

7Here an elementary étale neighbourhood is an étale morphism Y ′ → Y along which y
lifts to y′ ∶ Spec(κ)→ Y ′.
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A stack X is (τ, n)-Artin if it has (τ, n − 1)-representable diagonal and there
exists a scheme U and a smooth morphism U →X with τ -local sections.

A stack is τ -Artin if it is (τ, n)-Artin for some n.

The (ét,1)-Artin stacks are Artin stacks (or algebraic stacks) as defined
e.g. in [SP, Tag 026O]. More generally, the (ét, n)-Artin stacks and ét-Artin
stacks are n-Artin stacks and higher Artin stacks as defined in [Gai, §4.2].
We will usually drop the “ ét” from the notation.

A 1-Artin stack is (Nis,1)-Artin if and only if it is quasi-separated with
separated diagonal. The following is proven in [LMB, §6.7].

Theorem 0.7. Let X be a quasi-separated 1-Artin stack with separated
diagonal. Then there exists a scheme U and a smooth morphism U →X with
Nisnevich-local sections. In particular, X is (Nis,1)-Artin.

0.2.3. Fibre dimension. We recall the notion of fibre dimension for a morphism
of stacks, as studied in [EGA, IV3, §13] and [SP, Tag 0DRQ].

Let f ∶ X→ Y be a locally of finite type 1-representable morphism of locally
noetherian Artin stacks. Given a field κ and a κ-point x of X, the fibre
dimension of f at x is the dimension at x of the topological space underlying
the fibre f−1(f(x)) = Xf(x) = X×Y Spec(κ). See [SP, Tag 0DRQ] for details,
and [SP, Tag 04XG] for the definition of the underlying topological space of
a 1-Artin stack.

The fibre dimension of f ∶ X → Y determines a function on the underlying
topological space of X. This function is upper semi-continuous; see [EGA,
IV3, Thm. 13.1.3] and [SP, Tag 0DRE].

Lemma 0.8. Let f ∶ Y → X be a smooth morphism of locally noetherian
schemes and i ∶ Z ↪ Y a closed immersion. Let dY /X and dZ/X denote
the fibre dimensions of f and g = f ○ i. For every point z of Z, we have
dY /X(z) − dZ/X(z) = codim(Z ×X{g(z)}, Y ×X{g(z)}).

Proof. Let z ∶ Spec(k(z)) → Z be a point of Z, with image x = g(z) in X.
By definition, the fibre dimensions of f and g at z are

dY /X(z) = dimz(Y ×
X
{x}), dZ/X(z) = dimz(Z ×

X
{x}),

respectively. Since Y is smooth over X, Y ×X{x} is in particular biequidi-
mensional (combine [EGA, 0IV, Cor. 16.5.12], [EGA, IV2, Cor. 5.10.9], and
[Hei, Lem. 2.6]). It follows then from [Hei, Prop. 4.1] that

dY /X(z) − dZ/X(z) = codim(Z ×
X
{x}, Y ×

X
{x})

as claimed. □

0.3. Notation. We denote by Ani the∞-category of anima, a.k.a. homotopy
types or ∞-groupoids. We work over a fixed commutative ring k, which we
leave implicit in the notation. We denote by Sch (resp. Asp) the category of
schemes (resp. quasi-separated algebraic spaces) of finite type over k.
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The symbol τ ∈ {ét,Nis} will stand for the étale or Nisnevich topology. We
denote by τStk the ∞-category of τ -Artin stacks locally of finite type over
k.8 Given S ∈ τStk we denote by τStkS the ∞-category of τ -Artin stacks
locally of finite type over S. Note that any morphism in τStk (resp. τStkS)
is automatically locally of finite type.

0.4. Acknowledgments. We would like to thank Tom Bachmann, Jeremiah
Heller, Jens Hornbostel, Henry July, Marc Levine, and Pavel Safronov for
comments, questions, and discussions. We are especially grateful to Tom
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and EPSRC grant no EP/R014604/1 (A.K. and C.R.). We would like to
thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for
support and hospitality during the programme KAH2 where work on this
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1. Lisse extension

Given X ∈ τStk, we denote by LisX (resp. τLisStkX) the ∞-category of pairs
(T, t) where T ∈ Sch (resp. T ∈ τStk) and t ∶ T → X is a smooth morphism9.
Let F ∶ Lisop

X
→ V be a presheaf, where V is an ∞-category with limits.

Definition 1.1. The lisse extension of F is the presheaf

F◁ ∶ τLisStkop
X
→ V

defined as the right Kan extension of F along the fully faithful functor
LisX ↪ τLisStkX. In particular, we have

F◁(X) ≃ lim←Ð(T,t)
F (T )

where the limit is taken over (T, t) ∈ LisX.

Given a presheaf F ∶ Schop → V, we may restrict along the forgetful functor
LisX → Sch and form the lisse extension of the resulting presheaf FX on LisX.
On the other hand, we may also describe F◁

X
more directly in terms of F .

Moreover, this will work for presheaves with restricted functoriality (e.g. only
for smooth or lci morphisms).

8Thus every 1-Artin stack (in the usual sense) belongs to étStk, and if it is quasi-separated
with separated diagonal then also to NisStk (Theorem 0.7).

9Since t ∶ T → X is schematic for T ∈ Sch, it is smooth if and only if for any morphism
T ′ → X where T ′ is a scheme, the morphism of schemes T ×X T ′ → T ′ is smooth. See e.g.
[Gai, §4.2].
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Definition 1.2. Let τStk? ⊆ τStk be a wide subcategory containing all
smooth morphisms, and denote by Sch? ⊆ Sch the intersection Sch ∩ τStk?.
Given a presheaf F ∶ Sch?,op → V, its lisse extension F◁ is its right Kan
extension

F◁ ∶ τStk?,op → V

along Sch? ↪ τStk?.

Remark 1.3. Let Sch?/X denote the full subcategory of the slice τStk?/X
spanned by pairs (T, t ∶ T → X) where T is a scheme (and t is a morphism in
τStk?). Note that morphisms (T, t)→ (T ′, t′) are morphisms T → T ′ in Sch?

which are compatible with t and t′. Then we have

F◁(X) ≃ lim←Ð
(T,t)∈Sch?/X

F (T ).

Proposition 1.4. Let F ∶ Sch?,op → V be a presheaf. Assume that Sch?

contains all lci morphisms and that its morphisms are stable under smooth
base change10. If F satisfies τ -descent, then for every X ∈ τStk there is a
canonical isomorphism

F◁∣τLisStkX → (F ∣LisX)
◁

of presheaves on τLisStkX.

For example, we will apply Proposition 1.4 to presheaves on Sch and the
subcategories

Schsm, Schlci ⊆ Sch

containing only the smooth and lci morphisms, respectively.

Lemma 1.5. Let F ∶ Sch?,op → V be a presheaf where Sch? satisfies the
conditions of Proposition 1.4. If F satisfies τ -descent, then for every X ∈ τStk,
every scheme U and every smooth morphism p ∶ U → X admitting τ -local
sections, the canonical map

F◁(X)→ Tot(F (U●)) (1.6)

is invertible, where U● is the Čech nerve of p, “Tot” denotes the totalization
of a cosimplicial object.

Proof. Assume first that X = X is a scheme. By assumption, there exists
a scheme V and a τ -cover V ↠ X over which p admits a section. Since
F satisfies descent for the Čech nerve of V ↠ X, we may replace X by
V and thereby assume that p admits a section. This section (which is
lci, hence determines a morphism in Sch?) gives rise to a splitting of the
augmented simplicial object U● →X, so that the map (1.6) is invertible by
[Lur1, Lem. 6.1.3.16].

Now we consider the general case. For every pair (T, t) where T ∈ Sch and
t ∶ T → X is a morphism in τStk?, denote by UT ↠ T the base change of p

10i.e., if X → Y is a morphism in Sch? and Y ′ → Y is a smooth morphism in Sch, then
the base change X ×Y Y ′ → Y ′ belongs to Sch?
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and by UT,● its Čech nerve. The canonical map

F (T )→ Tot(F (UT,●)) (1.7)

is invertible by above.

Note that for every smooth morphism Y → X from a scheme, the base change
functor Sch?,op/X → Sch?,op/Y is cofinal. Indeed, given (T, t) ∈ Sch?/Y we have a
section s ∶ T → T ×X Y over Y of the projection T ×X Y → T . Since the latter
is smooth, s is lci and determines a morphism in Sch?/Y whose target lies in
the essential image of the functor in question. Thus, the morphism (1.6) is
the limit over (T, t) ∈ Sch?/X of the isomorphisms (1.7). □

Proof of Proposition 1.4. It will suffice to show that for every Y ∈ τLisStkX,
the projection map

F◁(Y) ≃ lim←Ð
(T,t)∈Sch?/Y

F (T )→ lim←Ð(T,t)∈(LisX)/Y
F (T ) (1.8)

is invertible. Here (LisX)/Y is the ∞-category of pairs (T, t) where T ∈ LisX
and t ∶ T → Y is a morphism in τLisStkX.

Let p ∶ Y ↠ Y be a smooth morphism admitting τ -local sections where Y is
a scheme. Denote by Y● the Čech nerve of p, so that there is an equivalence
Tot(F (Y●)) ≃ F◁(Y) by Lemma 1.5. This defines a diagram ∆op → (LisX)/Y,
so by projection there is a canonical map

lim←Ð(T,t)∈(LisX)/Y
F (T )→ lim←Ð[n]∈∆

F (Yn) ≃ F◁(Y).

One verifies that this is inverse to (1.8). □

2. A pro-approximation lemma

This section contains the first key technical result of the paper (Proposi-
tion 2.5). We begin by recalling some preliminaries about pro-objects.

Remark 2.1. Let V be an ∞-category with limits. We denote by Pro(V )
the ∞-category of pro-objects in V (see e.g. [BHH]). There is a canonical
fully faithful functor V ↪ Pro(V ) sending an object V ∈ V to the constant
pro-object {V }, whose essential image generates Pro(V ) under cofiltered
limits (see [BHH, Cor. 3.2.14]). The functor V ↪ Pro(V ) preserves finite
limits, which are computed levelwise in Pro(V ); indeed, this is easily verified
by universal properties using the formula for mapping anima

MapsPro(V )({Xα}α,{Yβ}β) ≃ lim←Ð
β

limÐ→
α

MapsV (Xα, Yβ). (2.2)

In particular, it follows that Pro(V ) admits arbitrary limits by [Lur1,
Prop. 4.4.2.6]. Moreover, formation of limits defines a functor

Pro(V )→ V , {Xα}α ↦ lim←Ð
α

Xα, (2.3)

which is right adjoint to V ↪ Pro(V ) (again using (2.2)), and in particular
limit-preserving.
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The following definition is inspired by [MV, §4, Def. 2.1] (see also Remark 2.11
below).

Notation 2.4. Let X ∈ τStk and {Uν}ν a filtered diagram in τStkX with
monomorphisms as transition maps. Suppose that for every index ν there is
a vector bundle Vν over X, an open immersion Uν ↪ Vν over X, and a closed
substack Wν ⊆ Vν complementary to Uν containing the zero section, such
that the following conditions hold:

(i) For every affine scheme T and every morphism T → X, there exists an
index ν0 such that the morphism Uν0 ×X T → T admits Nisnevich-local
sections.

(ii) For every index ν, there exists µ > ν such that the transition map
Uν → Uµ factors as follows:

Vν ∖Wν Vν ×XVν ∖Wν ×XWν

Uν Uµ.

(0,id)

A presheaf F ∶ Lisop
X
→ V is A1-invariant if for every T ∈ LisX, the canonical

map F (T )→ F (T ×A1) is invertible.

Proposition 2.5. Let X ∈ τStk and {Uν}ν as in Notation 2.4. Let F ∶
Lisop

X
→ V be an A1-invariant τ -sheaf and write F ∶ Lisop

X
→ V ↪ Pro(V ) for

the composite with the canonical embedding (Remark 2.1). Then there is a
canonical isomorphism

F
◁(X) ≃ {F◁(Uν)}ν (2.6)

in Pro(V ). In particular, the canonical morphisms F◁(X)→ F◁(Uν) deter-
mine an isomorphism

F◁(X) ≃ lim←Ð
ν

F◁(Uν) (2.7)

in V .

Remark 2.8. Note that F
◁(X) need not be isomorphic to the constant

pro-system {F◁(X)}. In particular, Proposition 2.5 does not imply the
existence of an isomorphism

{F◁(X)} ≃ {F◁(Uν)}ν .

In fact, F
◁(X) may not be essentially constant at all, see Remark 4.18 for

an example.

The proof of Proposition 2.5 will require the following lemmas:

Lemma 2.9. Let X ∈ τStk and F ∶ Lisop
X
→ V be a presheaf. Denote by

F! ∶ Fun(LisopX ,Ani)→ Pro(V )op

the unique colimit-preserving functor which restricts to F ∶ Lisop
X
→ V ↪

Pro(V ) (notation as in Proposition 2.5). Let A → B be an (A1,Nis)-local
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equivalence in Fun(Lisop
X
,Ani), i.e. a morphism such that the induced map

Maps(B,G)→Maps(A,G)

is invertible for every A1-invariant Nisnevich sheaf G ∈ Fun(Lisop
X
,Ani). If

F satisfies A1-invariance and Nisnevich descent, then F!(A) → F!(B) is
invertible.

Proof. By [Lur1, Prop. 5.5.4.15(4)], a morphism A → B in Fun(Lisop
X
,Ani)

is an (A1,Nis)-local equivalence if and only if it belongs to the strongly
saturated class generated by the morphisms

(i) for every T ∈ LisX, the projection T ×A1 → T ;

(ii) for every Nisnevich covering family (T ′α → T )α in LisX, the morphism
limÐ→T ′● → T where T ′● ∶ ∆op → Fun(Lisop

X
,Ani) is the Čech nerve of

∐α T
′
α → T .

By (the proof of) [Kha1, Thm. 2.2.7], (ii) may be replaced by the following
class:

(ii bis) the morphism from the initial presheaf to the presheaf represented
by the empty scheme; and for every étale morphism V → T in
LisX which is an isomorphism away from a cocompact closed subset
K ⊆ ∣T ∣, the morphism V ∐W U → T in Fun(Lisop

X
,Ani), where

U = T ∖K and W = V ×T U .

Since F! preserves colimits, it will thus suffice to show that it inverts mor-
phisms of type (i) and (ii bis). For T ∈ LisX, F! sends T ×A1 → T to the
morphism of constant pro-objects

{F (T )}→ {F (T ×A1)}

which is invertible since F is A1-invariant. Similarly, F! sends V ∐W U → T
as in (ii bis) to the morphism of pro-objects

{F (T )}→ {F (V )} ×
{F (W )}

{F (U)}.

Since finite limits in Pro(V ) are computed levelwise (Remark 2.1), this is
identified with the morphism of constant pro-objects

{F (T )}→ {F (V ) ×
F (W )

F (U)},

which is invertible since F satisfies Nisnevich descent (and by [Kha1, Thm. 2.2.7]).
□

Lemma 2.10. Let X = X be an affine scheme and {Uν}ν = {Uν}ν be as in
Notation 2.4. Suppose there exists an index ν0 such that Uν0 → X admits
a section. Then the presheaf U∞ ∶= limÐ→ν

Uν (where the colimit is taken in
presheaves) is A1-contractible on smooth affine X-schemes.

Proof. The following argument is extracted from the proof of [MV, §4,
Prop. 2.3]. The claim is that the animum RΓ(T,LA1 U∞) is contractible for
every affine T ∈ LisX , where LA1 denotes the A1-localization functor (see e.g.
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[Hoy1, Proof of Prop. C.6]), i.e. that the simplicial set

MapsFun(LisopX ,Ani)(T ×A●, U∞) ≃ limÐ→
ν

MapsLisX (T ×A
●, Uν)

is a contractible Kan complex. By [EHKSY, Lem. A.2.6] and closed gluing
for the presheaf U∞, it is enough to show that for every n ⩾ 0 and every affine
T ∈ LisX , the restriction map

Maps(T ×An, U∞)→Maps(T × ∂An, U∞)

is surjective on π0, where we identify An with the closed subscheme of
An+1 = Spec(Z[T0, . . . , Tn]) defined by ∑i Ti = 1, and ∂An is the closed
subscheme defined by the further equation T0 . . . Tn = 0.
Let ν ⩾ ν0 be an index. Denote by s ∶ X → Uν0 → Uν the induced section
and by t ∶ T → X → Uν its composite with the structural morphism. The
existence of t shows the surjectivity for n = 0.
Let n > 0 and f ∶ T × ∂An → Uν a morphism over X. We claim that this
extends to a morphism g ∶ T ×An → Uµ for some index µ ⩾ ν. Since T and
X are affine and Vν is a vector bundle over X, there exists an X-morphism
g′ ∶ T ×An → Vν which restricts to f on T ×∂An. Since T ×∂An and g′−1(Wν)
are disjoint as closed subschemes of T ×An, there exists for the same reason
an X-morphism g′′ ∶ T ×An → Vν which restricts to 0 on T × ∂An and to

g′−1(Wν)→X
sÐ→ Uν ⊆ Vν

on g′−1(Wν). By construction, the induced X-morphism

(g′′, g′) ∶ T ×An → Vν ×
X
Vν

restricts to (0, f) ∶ T × ∂An → Vν ×X Vν , and factors through the complement
of Wν ×X Wν . Let µ > ν and the morphism Vν ×X Vν ∖Wν ×X Wν → Uµ be as
in assumption (ii). Then the composite

g ∶ T ×An (g′′,g′)ÐÐÐÐ→ Vν ×
T
Vν ∖Wν ×

X
Wν → Uµ

fits into the commutative diagram

T × ∂An Uµ

T ×An X

f

g

as desired. □

Proof of Proposition 2.5. The second isomorphism (2.7) follows from (2.6)
by applying the limit-preserving functor Pro(V )→ V (2.3). By Lemma 2.9
it will suffice to show that limÐ→ν

Uν → X is an (A1,Nis)-local equivalence in
Fun(Lisop

X
,Ani). By universality of colimits, this morphism is identified with

the colimit over T ∈ LisX of the base changes

limÐ→
ν

Uν ×
X
T → T.
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Since local equivalences are preserved by the colimit-preserving functor
Fun(LisopT ,Ani) → Fun(Lisop

X
,Ani) sending U ∈ LisT to U ∈ LisX, and be-

cause the data and assumptions in Notation 2.4 are stable under base change,
we may thus replace X by T to assume that it is a scheme. We can moreover
assume that X ∶= X is affine, arguing similarly using the fact that it can be
written as a colimit of affines up to local equivalence. Finally, we may also
assume up to local equivalence that Uν0 →X admits a section for some index
ν0 (by condition (i)). Now the claim follows from Lemma 2.10. □

Remark 2.11. In Notation 2.4, a sufficient condition for (i) is that for every
field κ and every κ-valued point s ∶ Spec(κ) → X, there exists an index νs
and a lift Spec(κ) → Uνs . Indeed, let us show that if X is affine then there
exists an index ν0 such that Uν → X admits Nisnevich-local sections. The
assumption implies that the disjoint union ∐ν Uν → X is a smooth morphism
(not necessarily of finite type) which is surjective on field-valued points. By
Lemma 0.6 (and its étale analogue [EGA, Cor. 17.16.3(ii)]), there exists an
affine scheme X and a Nisnevich cover X ↠ X along which the base change
∐ν Uν ×XX →X admits a section. Since X is quasi-compact, there is a finite
subset I of indices through which the section factors. Any section of Uν gives
rise to a section of Uµ for any µ > ν (by composition with the transition map),
so we may assume that I consists of a single index ν0.

3. The Borel construction

We now specialize our general results from the previous sections to the case
of the Borel construction. By the latter we mean the following (compare
[Lus, 1.1], [Tot, §1], [MV, §4.2], [HML, Def. 10]).

Let S be a quasi-separated algebraic space, locally of finite type over k, and
G an fppf group scheme over S.

Notation 3.1. We construct an N>0-indexed tower {Uν}ν where each Uν

is an algebraic space of finite type over S with a free G-action, and the
transition maps are G-equivariant closed immersions. The construction will
make use of the following auxiliary choices:

(i) An embedding of G as a closed subgroup scheme of GLS(E) for some
finite locally free sheaf E on S. Write V = VS(E) for the associated
vector bundle over S with its induced G-action.

(ii) A open U ⊆ V on which G acts freely, whose (reduced) complement
W ⊆ V is of fibre dimension over S (0.2.3) strictly smaller than that of
V over S.

For every integer ν > 0, set Vν ∶= V ×ν and Wν ∶= W ×ν (where both powers
are fibred over S), and let Uν ⊆ Vν be the complement of Wν . The diagonal
action of G on V ×ν restricts to a free action on Uν . The transition map
Uν ↪ Uν+1 is defined by restricting the G-equivariant closed immersion
(id,0) ∶ V ×ν ↪ V ×ν ×S V = V ×ν+1.
Since the quotients [Uν/G] are algebraic spaces (as the actions are free), we
will also write Uν/G ∶= [Uν/G].
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Example 3.2. Suppose G is embeddable, in the sense that some embedding
G ⊆ GLS(E) as in (i) exists (e.g. S is the spectrum of a field and G is a linear
algebraic group). Then the choice of some U as in (ii) also exists, see e.g.
[Tot, Rem. 1.4].

Remark 3.3. The following two features of the construction in Notation 3.1
will be useful later:

(i) For each ν consider the function

cν ∶= dVν/S ∣Wν − dWν/S
where dVν/S and dWν/S denote the fibre dimensions of Vν and Wν over
S, respectively.11 We have cν = ν ⋅ c1 (this follows from [EGA, IV2,
Cor. 4.1.5]), so in particular cν tends to ∞ as ν increases.

(ii) For all indices µ > ν, the open immersion Uν ×S Vµ−ν ↪ Vν ×S Vµ−ν = Vµ

factors through the open Uµ ⊆ Vµ. In other words, the transition map
Uν ↪ Uµ factors as follows:

Uν Uν ×S Vµ−ν

Uµ Vµ = Vν ×S Vµ−ν .

(id,0)

Notation 3.4. Let τStkGS denote the ∞-category of locally of finite type τ -
Artin stacks X over S with G-action such that the quotient [X/G] is τ -Artin.
Note that this is equivalent to the ∞-category τStkBG of locally of finite type
τ -Artin stacks X over BG = [S/G] (via the assignment X ↦ X = [X/G]). For
X ∈ τStkGS , we write

X
G×
S
Uν ∶= [X/G] ×

BG
(Uν/G)

for each ν. This is representable and of finite type over [X/G] (hence in
particular is τ -Artin).

Remark 3.5. The ∞-category τStkGS contains every locally of finite type
quasi-separated algebraic space over S with G-action. More generally, let X
be a locally of finite type (ét,1)-Artin stack over S with G-action. If X is
quasi-separated with separated diagonal, then the quotient [X/G] is again
quasi-separated (ét,1)-Artin with separated diagonal, hence X belongs to
τStkGS by Theorem 0.7.

Remark 3.6. If X is a quasi-projective scheme over S with a linearized
G-action, then each X ×GS Uν is a quasi-projective S-scheme (see [MFK,
Prop. 7.1]).

Applying the results of Sect. 2, we obtain:

Theorem 3.7. Let X ∈ τStkGS and let F ∶ Lisop[X/G] → V be an A1-invariant
τ -sheaf with values in an∞-category V with limits. Then there is a canonical

11See (0.2.3). By Lemma 0.8, cν can be computed at any point of Wν as the fibrewise
codimension.
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isomorphism

F◁([X/G]) ≃ lim←Ð
ν

F◁(X G×
S
Uν) (3.8)

in V .

Proof. The filtered diagram {Uν}ν over S satisfies the assumptions of No-
tation 2.4 (compare [MV, §4, Ex. 2.2] and Remark 2.11). Moreover, the
transition maps and the maps Uν ↪ Vν are all G-equivariant, so the same
holds for the quotient {Uν/G}ν over BG = [S/G]. By base change it also holds
for {X ×GS Uν}ν over [X/G]. Thus the claim follows from Proposition 2.5. □

Corollary 3.9. Let F ∶ Schlci,op → Spt be an A1-invariant τ -sheaf of spectra.
Then for every X ∈ τStkGS , there is a canonical isomorphism of spectra

F◁([X/G])→ lim←Ð
ν

F◁(X G×
S
Uν),

where F◁ ∶ τStklci,op → Spt denotes the lisse extension (Definition 1.2).

Proof. Given X ∈ τStkGS , we may replace F by its restriction to Lis[X/G] in
view of Proposition 1.4. Then we conclude by applying Theorem 3.7. □

4. Pro-approximation in weaves

4.1. Sheaf cohomology. We now turn our attention to cohomology theories
represented by a sheaf in some category of coefficients. That is, let D ∶
Schop →∞-Cat be a τ -sheaf of ∞-categories and consider its lisse extension
D◁ ∶ τStkop →∞-Cat as in Definition 1.2, so that

D◁(X) = lim←Ð(T,t)∈LisX
D(T )

for any X ∈ τStk. In this situation, Theorem 3.7 yields:

Corollary 4.1. Let G and {Uν}ν be as in Notation 3.1. For every X ∈ τStkGS
and F ∈D◁([X/G]), the canonical morphism of spectra

RΓ([X/G],F)→ lim←Ð
ν

RΓ(X G×
S
Uν ,F)

is invertible.

Proof. Given X ∈ τStkGS and F ∈ D◁([X/G]), consider the presheaf F ∶
τLisStkop[X/G] → Spt defined by the assignment

(T, t ∶ T → [X/G])↦ RΓ(T,F) ∶=MapsD◁(T )(1T , t
∗(F)).

This is lisse-extended from its restriction F ∣Lis[X/G] , which is an A1-invariant
τ -sheaf (since D is topological). The claim now follows from Theorem 3.7. □

In this section, our goal is to address the analogue of Corollary 4.1 at the
level of hypercohomology, i.e., invertibility of the morphisms

Hi([X/G],F)→ lim←Ð
ν

Hi(X G×
S
Uν ,F)



18 A.A. KHAN AND C. RAVI

for i ∈ Z. This will require us to pass to a slightly more involved setup.

4.2. Weaves. Let D be a weave on Sch in the sense of [Kha4, Kha5]. We
will assume that D is topological as in [Kha4, §2], meaning that it satisfies
homotopy invariance for vector bundles and localization for closed-open
decompositions. Sometimes, notably in Corollary 4.16, we will also assume
that D satisfies topological invariance, i.e., that for a finite radicial surjection
f , the functor f∗ is an equivalence (cf. [EK]). When D also satisfies continuity,
this implies that that f∗ is an equivalence for any universal homeomorphism.

We set τ = Nis, or τ = ét if D has étale descent. By [Kha5], the lisse
extension D◁ admits a canonical structure of weave on τStk, where all locally
of finite type morphisms are shriekable. Roughly speaking, D◁ amounts
to a collection of ∞-categories D◁(X) for every X ∈ τStk, an adjoint pair
of functors (f∗, f∗) for every morphism f in τStk, and an adjoint pair of
functors (f!, f !) for every locally of finite type morphism f , and homotopy
coherent base change and projection formulas.

The classical examples are the Betti and étale weaves (Sect. 5), which were
extended to stacks by Liu–Zheng [LZ]. For more general weaves, such as the
stable motivic homotopy weave (Sect. 6), we have appeal to [Kha5, §7].

4.3. The cohomological t-structure.

Definition 4.2. Let X ∈ Sch. Denote by D(X)⩾n ⊆ D(X) the full sub-
category generated under colimits and extensions by objects of the form
a!a

!(1)(q)[n], where a ∶ T → X is a smooth morphism from a scheme
and q ∈ Z, and by D(X)⩽n ⊆ D(X) the full subcategory spanned by
F ∈ D(X) for which the spectrum of derived global sections RΓ(T,F(q))
is n-coconnective for all q ∈ Z and all smooth X-schemes T . The pair
(D(X)⩾0,D(X)⩽−1) of orthogonal subcategories defines a t-structure on
D(X) by [Lur2, Prop. 1.4.4.11].

We say that F ∈ D(X) is n-connective, resp. n-coconnective, if it be-
longs to D(X)⩾n, resp. D(X)⩽n. We say that F is eventually connective,
resp. eventually coconnective, if it belongs to D(X)>−∞ = ⋃nD(X)⩾n, resp.
D(X)<∞ = ⋃nD(X)⩽n.

Note that, for a morphism f ∶X ′ →X in Sch, the functor f∗ is right t-exact,
i.e., preserves connectivity. If f is smooth, f∗ ≃ f !⟨−Ωf ⟩ has a left adjoint
f!⟨Ωf ⟩. By the defintions, the latter is right t-exact. Hence by adjunction f∗
is also left t-exact in this case, i.e., also preserves coconnectivity.

We extend the cohomological t-structure to stacks as follows:

Proposition 4.3. Let X ∈ τStk. There exists a unique t-structure on the
stable ∞-category D◁(X) such that F ∈D◁(X) belongs to D◁(X)⩽n, resp.
D◁(X)⩾n, if and only if for every (T, t ∶ T → X) ∈ LisX, the object t∗(F)
belongs to D(T )⩽n, resp. D(T )⩾n.
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Proof. By definition, we have equivalences

D◁(X) ≃ lim←Ð
t

D(T ), D◁(X)⩾0 ≃ lim←Ð
t

D(T )⩾0

where the limits are taken over pairs (T, t ∶ T → X) ∈ LisX and the tran-
sition functors are t∗. Since the latter are t-exact, they restrict to left
exact functors on the subcategories D(T )⩾0. Moreover, each D(T )⩾0 is a
Grothendieck prestable ∞-category by [Lur3, Prop. C.1.4.1]. In this situation
[Lur3, Prop. C.3.2.4] implies that the limit D◁(X)⩾0 is also Grothendieck
prestable and that the functors t∗ ∶ D◁(X)⩾0 → D(T )⩾0 are left exact and
jointly conservative. Passing back to stabilizations, it follows from [Lur3,
Cor. C.3.2.5, Prop. C.1.4.1] that D◁(X) admits a t-structure whose connective
part is D◁(X)⩾0 and such that the functors t∗ ∶D◁(X)→D(T ) are t-exact
and jointly conservative. The latter implies that an object F ∈D◁(X) belongs
to the coconnective part of the t-structure if and only if t∗(F) ∈D(T )⩽0 for
every (T, t) ∈ LisX. □

Theorem 4.4. Let f ∶ X′ → X be a morphism in τStk.

(i) The functor f∗ is right t-exact. If f is smooth, f∗ is also left t-exact.

(ii) The functor f∗ is left t-exact.

(iii) If f is smooth of relative dimension d, then f ![−2d] is left t-exact and
f![2d] is right t-exact.

(iv) Suppose D satisfies topological invariance and continuity. If f is of
fibre dimension ⩽ d (see (0.2.3)), then f ![−2d] is left t-exact and f![2d]
is right t-exact.

(v) For every K-theory class v ∈ K(X) of virtual rank r, the shifted Thom
twist ⟨v⟩[−2r] ∶D◁(X)→D◁(X) is t-exact.

Proof. That f∗ is right t-exact (so that f∗ is left t-exact by adjunction)
follows easily from the case of schemes. We deduce by Poincaré duality that
f∗ is also left t-exact when f is smooth.

The statement about Thom twists ⟨v⟩[−2r] can be checked smooth-locally
on X (since ∗-inverse image along smooth morphisms is t-exact), so we may
assume the K-theory class v can be represented as a difference of finite locally
frees. In this case we reduce to showing that ⟨r⟩[−2r] = (r) (Tate twist)
is t-exact. This is clear since it is evidently left t-exact, and admits a left
adjoint (−r) which is also left t-exact.

For f ∶ X′ → X smooth of relative dimension d we deduce that f ! ≃ f∗⟨Ωf ⟩
sends n-coconnective objects to (n + 2d)-coconnective objects, and its left
adjoint f! sends n-connective objects to (n − 2d)-connective objects.

If f ∶ X′ → X is a morphism of fibre dimension ⩽ d, then the same holds
assuming that D satisfies topological invariance and continuity. Indeed, take
an object F ∈ D(X′)⩾n and let us show that f!(F) is (n − 2d)-connective.
Replacing f by its base change along some smooth atlas X ↠ X, we may
assume that X = X is a scheme. By [BH, Prop. B.3] it will suffice to show
that x∗f!(F) is (n − 2d)-connective for every point x ∶ Spec(k(x))→X. By
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the base change formula we may thus reduce further to the case where X is
the spectrum of a field κ, and by topological invariance and continuity that
it is moreover perfect. By nilpotent invariance we may also assume that X′ is
reduced. Then X′ admits a dense open which is smooth over Spec(κ) (take
a smooth atlas by a scheme and take the image of the smooth locus of the
latter), so by noetherian induction and the localization triangle we reduce to
the case where f ∶ X′ → Spec(κ) is smooth. □

Note that an immersion i ∶ Y↪ X has fibre dimension ⩽ 0, so Theorem 4.4(iv)
only yields that i! is right t-exact and i! is left t-exact. Nevertheless, we have:

Corollary 4.5. Suppose D satisfies topological invariance and continuity.
Let f ∶ Y→ X be a smooth morphism in τStk and i ∶ Z↪ Y a closed immersion.
Let dY/X and dZ/X denote the fibre dimensions and write c = dY/X∣Z − dZ/X
(regarded as a locally constant function on Z). Then i!f∗[2c] is left t-exact.

Proof. By Poincaré duality for the smooth morphism f , we have i!f∗[2c] ≃
g!⟨−Ωf ⟩[2c], where g = f ○ i. The claim is that for every 0-coconnective
F ∈D◁(X), g!(F)⟨−Ωf ⟩ is (−2c)-coconnective. By Theorem 4.4, g![−2dZ/X]
and ⟨−Ωf ⟩[2dY/X] are left t-exact. In particular, g!(F)⟨−Ωf ⟩ is (2dZ/X−2dY/X)-
coconnective if F is 0-coconnective. □

4.4. Acyclic morphisms. The following terminology is inspired by [SGA4,
Exp. XV, Déf. 1.7]:

Definition 4.6.

(i) A morphism f ∶ Y→ X in τStk is n-acyclic, for some n ∈ Z, if the unit
morphism F → f∗f∗(F) is n-coconnective for every F ∈D◁(X)<∞.12

(ii) A morphism f ∶ Y→ X in τStk is acyclic if it is n-acyclic for every n.

For example, any vector bundle projection is acyclic (by homotopy invariance).

Remark 4.7. Let f ∶ Y→ X be a morphism in τStk.

(i) If f is n-acyclic, then for every F ∈D(X)<∞ the map

f∗ ∶ RΓ(Y,F)→ RΓ(X,F)
is injective on πn+1 and bijective on πi for i ⩾ n+ 2. In other words, the
map

f∗ ∶ Hi(Y,F)→ Hi(X,F)
is injective is injective for i = −n − 1 and bijective for i ⩽ −n − 2.

(ii) If the cohomological t-structure on D◁(X) is left-complete, then f
is n-acyclic if and only if F → f∗f∗(F) is an isomorphism for every
F ∈D◁(X).

(iii) If the cohomological t-structure on D◁(X) is right-separated (e.g. right-
complete), then f is acyclic if and only if F → f∗f∗(F) is an isomorphism
for every F ∈D◁(X)<∞.

12We say a morphism is n-(co)connective if its fibre is n-(co)connective.
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4.5. Pro-acyclic morphisms.

Definition 4.8. Let X ∈ τStk and let Y ∶= {Yν}ν be a sequential diagram in
τStkX with structural morphisms fν ∶ Yν → X. We say that f ∶= {fν}ν ∶ Y→ X

is:

(i) n-acyclic if for every F ∈D◁(X)<∞, the canonical morphism in D◁(X)

F → lim←Ð
ν

fν,∗f∗ν (F)

is n-coconnective. It is acyclic if it is n-acyclic for all n ∈ Z.

(ii) n-pro-acyclic if for every F ∈D◁(X)<∞, there exists an index ν(n) such
that the morphisms

F → fν,∗f∗ν (F)
are n-coconnective for all ν ⩾ ν(n).

(iii) pro-acyclic if it is n-pro-acyclic for all n ∈ Z.

Since coconnectivity is stable under limits, n-pro-acyclic morphisms are
n-acyclic.

Example 4.9. If each fν ∶ Yν → X is n-acyclic for all ν, then f = {fν}ν is
n-pro-acyclic, hence n-acyclic. In fact, it suffices that for every n ∈ Z there
exists an index ν(n) such that fν is n-acyclic for all ν ⩾ ν(n).

Remark 4.10. Suppose f ∶= {fν}ν ∶ Y → X is n-pro-acyclic. For every
F ∈ D◁(X)<∞, it follows then from the definition of the cohomological t-
structure that there exists an index ν(n) such that for all ν ⩾ ν(n), the
map

f∗ν ∶ RΓ(X,F)→ RΓ(X, fν,∗f∗ν F) ≃ RΓ(Yν ,F) (4.11)

has n-coconnective fibre, for all ν ⩾ ν(n). In other words, (4.11) is injective
on πn+1 and bijective on πi for i ⩾ n + 2, i.e., that

f∗ν ∶ Hi(X,F)→ Hi(Yν ,F)

is injective for i = −n − 1 and bijective for i ⩽ −n − 2. Thus if f is pro-acyclic,
then for every integer i ∈ Z the maps

f∗ν ∶ Hi(X,F)→ Hi(Yν ,F) (4.12)

become invertible for sufficiently large ν, and in particular

Hi(X,F)→ lim←Ð
ν

Hi(Yν ,F) (4.13)

is invertible for every i ∈ Z.

Proposition 4.14. Let X ∈ τStk and let {fν ∶ Yν → X}ν be a sequential
diagram in τStkX. If {fν}ν is n-acyclic (resp. n-pro-acyclic), then for every
smooth morphism X′ → X in τStk, so is the base change {f ′ν ∶ Yν ×XX′ → X′}ν .

Proof. Follows from the smooth base change formula and the fact that ∗-
inverse image along smooth morphisms is t-exact. □
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4.6. Pro-acyclicity of the Borel construction. We adopt again the setup
of Sect. 3. In this subsection we will prove:

Proposition 4.15. Let D be a lisse-extended topological weave on τStk, and
assume D satisfies topological invariance and continuity. Then we have:

(i) The morphism {Uν/G}ν → [S/G] = BG is pro-acyclic.

(ii) For every X ∈ τStkGS , the morphism

{X G×
S
Uν}ν → [X/G]

is pro-acyclic, where X ×GS Uν ∶= [X/G]×BG(Uν/G).

Corollary 4.16. Let D be as in Proposition 4.15. For every X ∈ τStkGS and
every F ∈D◁(S)<∞, the morphism

Hi([X/G],F)→ lim←Ð
ν

Hi(X G×
S
Uν ,F) (4.17)

is invertible for all i ∈ Z. Moreover, there exists a sufficiently large index ν
such that

Hi([X/G],F)→ Hi(X G×
S
Uν ,F)

is invertible.

Proof. Combine Proposition 4.15 with Remark 4.10. □

Remark 4.18. Corollary 4.16 says in other words that for any eventually
coconnective F ∈D◁([X/G])<∞, the pro-system

{πiRΓ(X G×
S
Uν ,F)}ν

is essentially constant for all i ∈ Z. This may fail without the eventually
coconnective hypothesis. For example, take X = S = Spec(k) with k a field,
G =Gm,k, D = SH as in Sect. 6, E = KGL ∈ SH(k) the algebraic K-theory
spectrum, and F = a∗KGL where a ∶ BGm,k → Spec(k). Then the pro-system

{π0RΓ(Uν/Gm,k,KGL)}ν ≃ {K0(Pν
k)}ν ≃ {Z[t]/(tν)}ν

is not isomorphic to the constant pro-system {Z[[t]]}. We thank Marc Levine
for pointing out this example.

The proof of Proposition 4.15 will use the following lemma:

Lemma 4.19. Suppose that D satisfies topological invariance and continuity.
Let X ∈ τStk and let {jν ∶ Uν → Yν}ν be a sequential diagram of open
immersions in τStkX with Yν smooth over X. Write cν ∶= dYν/X∣Zν − dZν/X,
where Zν ∶= Yν ∖Uν are the reduced complements and dYν/X and dZν/X are
the fibre dimensions (see (0.2.3)). Assume that for every c ∈ Z there exists an
index ν(c) for which cν ⩾ c for all ν ⩾ ν(c). If {fν ∶ Yν → X}ν is pro-acyclic,
then {gν ∶ Uν → X}ν is pro-acyclic.

Proof. By definition of the lisse extension and of the cohomological t-structure
on D◁(X), we may assume that X = X, Yν = Yν , and Uν = Uν are schemes.
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For every ν and every F ∈D(X)<∞ we have a commutative triangle

F

fν,∗f∗ν (F) gν,∗g∗ν(F)

where the horizontal arrow is induced by the unit id→ jν,∗j∗ν . This gives rise
to the exact triangle

K(fν)→ K(gν)→ Kν

where K(fν), K(gν), and Kν are the fibres of the left-hand diagonal, right-
hand diagonal, and horizontal arrows respectively. It will thus suffice to show
the following claim:

(∗) For every integer n ∈ Z and every F ∈ D◁(X)<∞, choose an integer
c ⩾ (C − n)/2; then Kν is n-coconnective for all ν ⩾ ν(c).

By the localization triangle, we have

Kν ≃ fν,∗iν,∗i!νf∗ν (F)
where iν ∶ Zν → Yν is the inclusion of the reduced complement of Uν . Let
C ∈ Z such that F is C-coconnective. For every fixed n ∈ Z, if c ⩾ (C − n)/2
then dYν/X ∣Zν − dZν/X ⩾ c for all ν ⩾ ν(c). It follows by Theorem 4.4 and
Corollary 4.5 that Kν is (C − 2c)-coconnective. As (C − 2c) ⩽ n, Kν is in
particular n-coconnective for every ν ⩾ ν(c). □

Proof of Proposition 4.15. Given X ∈ τStkGS , consider the tower of open
immersions

{X G×
S
Uν →X

G×
S
Vν}ν>0

over [X/G], where the notation is as in 3.1. For every ν, X ×GS Vν is the total
space of a vector bundle over [X/G], hence is acyclic (by homotopy invariance
for D). It will therefore suffice to check the condition on fibre dimensions in
Lemma 4.19. Since fibre dimension is stable under base change, this follows
from the fact that cν = dVν/S ∣Wν − dWν/S tends to ∞, where Wν ⊆ Vν is the
reduced complement of Uν (see Remark 3.3). □

5. Betti and étale (co)homology

In this section we specialize the results of the previous section to the following
weaves:

(i) Betti: Suppose k = C. For every locally of finite type k-scheme X,
let D(X) ∶= D(X(C),Λ) denote the derived ∞-category of sheaves of
Λ-modules on the topological space X(C), for some commutative ring
Λ. This satisfies topological invariance by definition.

(ii) Étale (torsion coefficients): For every locally of finite type k-scheme
X, let D(X) ∶= Dét(X,Λ) denote the derived ∞-category of sheaves
of Λ-modules on the small étale site of X, where Λ is a commutative
ring of positive characteristic n, with n invertible in k. Topological
invariance holds by [SGA4, Exp. VIII, Thm. 1.1].
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(iii) Étale (adic coefficients): For every locally of finite type k-scheme S, let
D(X) denote the limit of ∞-categories

lim←Ð
n>0

Dét(X,Λ/mn)

where Λ is a discrete valuation ring whose residue characteristic is
invertible in k. Topological invariance follows from the case of torsion
coefficients.

In each case the unit 1X ∈D(X) is just the constant sheaf with coefficients
in Λ. These all satisfy étale descent, so one may take τ = ét; in this case the
lisse extension D◁ is the unique étale sheaf on τStk which restricts to D on
Sch and in particular coincides with the extension to stacks considered in
[LZ]. More generally the following discussion goes through for topological
weaves which are oriented and satisfy topological invariance and continuity,
and for which the units 1X ∈ D(X) lie in the heart of the cohomological
t-structure for every X ∈ Sch.

Let S, G, and {Uν}ν be as in Notation 3.1. Corollaries 4.1 and 4.16 specialize
to:

Corollary 5.1. For every X ∈ τStkGS and F ∈D◁([X/G]), there are canonical
isomorphisms

RΓ([X/G],F) ≃ lim←Ð
ν

RΓ(X G×
S
Uν ,F).

Moreover, if F ∈ D◁([X/G])<∞ is eventually coconnective, then there are
canonical isomorphisms

Hs([X/G],F) ≃ lim←Ð
ν

Hs(X G×
S
Uν ,F)

for every s ∈ Z.

Taking coefficients in the constant sheaf ΛBG = 1BG ∈D◁(BG) we deduce:

Corollary 5.2. For every X ∈ τStkGS , there are canonical isomorphisms

Hs
G(X) ≃ lim←Ð

α

Hs(X ×G Uα)

for all s ∈ Z.

Proof. The object f∗(ΛBG) = Λ[X/G] ∈D◁([X/G]) is 0-coconnective (Theo-
rem 4.4(i)). □

For X ∈ τStkG, define the equivariant Borel–Moore homology spectrum
(relative to the base S)

CBM,G
● (X; Λ) = RΓ([X/G], f !(ΛBG))

where f ∶ [X/G]→ [S/G] = BG is the projection.

Corollary 5.3. We have

CBM,G
● (X; Λ) ≃ lim←Ð

ν

CBM
● (X

G×
S
Uν ; Λ)(−dν + g)[−2dν + 2g],
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where dν is the relative dimension of Uν → S and g is the relative dimension
of G→ S.

Proof. By Corollary 5.1 we have

RΓ([X/G], f !(ΛBG)) ≃ lim←Ð
ν

RΓ(X G×
S
Uν , q

∗
νf

!(ΛBG))

where qν ∶ X ×GS Uν → [X/G] is the base change of Uν/G → BG. The latter
are smooth of relative dimension dν . By the Poincaré duality isomorphisms
q∗ν ≃ q!ν(−dν)[−2dν] and ΛBG ≃ a!BG(ΛS)(g)[2g], where aBG ∶ BG → S, the
right-hand side is identified with the limit of the (shifted and Tate twisted)
Borel–Moore chains on X ×GS Uν as claimed. □

We define the equivariant Borel–Moore homology groups by

HBM,G
s (X; Λ) = πsRΓ([X/G], f !(ΛBG)) ≃ H−s([X/G], f !(ΛBG))

for s ∈ Z.

Corollary 5.4. If X is of finite dimension (in the sense of [SP, 0AFL] or
[LMB, Eq. (11.14)]), then

HBM,G
s (X; Λ) ≃ lim←Ð

ν

HBM
s+2dν−2g(X

G×
S
Uν ; Λ)(−dν + g).

for every s ∈ Z.

Proof. If X is of dimension ⩽ d, then f ∶ [X/G]→ BG is of relative dimension
⩽ d, so f !(ΛBG) is 2d-coconnective by Theorem 4.4. We conclude by the
second part of Corollary 5.1. □

6. Generalized cohomology theories

In this section we consider the case where D is a general topological weave.
For concreteness, we take the universal case D = SH (and τ = Nis).
Given a scheme X, let SH(X) denote the stable ∞-category of motivic
spectra over X (see e.g. [Hoy1, App. C]), and consider the lisse extension
SH◁(−) with respect to ∗-inverse image.

Let S, G, and {Uν}ν be as in Notation 3.1. By Corollary 4.1 we deduce the
following, a vast generalization of [KR, Thm. 12.9].

Corollary 6.1. For every X ∈ τStkGS and F ∈ SH◁([X/G]), there are
canonical isomorphisms

RΓ([X/G],F) ≃ lim←Ð
ν

RΓ(X G×
S
Uν ,F).

The six functor formalism on SH(−) persists to the lisse extension SH◁(−)
by [Cho, Kha5]. In particular, for any locally of finite type morphism f in
τStk one has the adjoint pair of functors (f!, f !).
Given a motivic spectrum E ∈ SH(S), let EBG = E∣BG denote its ∗-inverse
image in SH◁(BG). For X ∈ τStkGS , define the equivariant Borel–Moore
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homology spectrum (relative to the base S)

CBM,G
● (X;E) = RΓ([X/G], f !(EBG))

where f ∶ [X/G]→ [S/G] = BG is the projection. We denote by ⟨n⟩ ≃ (n)[2n]
the Thom twist by the trivial bundle of rank n.

Corollary 6.2. For every X ∈ τStkGS there is a canonical isomorphism

CBM,G
● (X;E) ≃ lim←Ð

ν

CBM
● (X

G×
S
Uν ;E)⟨−ΩUν/S +ΩG/S⟩.

If E is oriented, then moreover

CBM,G
● (X;E) ≃ lim←Ð

ν

CBM
● (X

G×
S
Uν ;E)⟨−dν + g⟩,

where dν (resp. g) is the relative dimension of Uν → S (resp. G→ S).

Proof. Follows from Corollary 6.1 as in the proofs of Corollaries 5.3 and 5.4,
using the (unoriented) Poincaré duality isomorphisms

q∗ν ≃ q!ν⟨−ΩUν/S⟩, EBG ≃ a!BG(E)⟨ΩG/S⟩,
where ΩUν/S is the (G-equivariant) relative cotangent sheaf of Uν → S, and
similarly for ΩG/S , and aBG ∶ BG→ S is the projection. □

Suppose k is a field, S = Spec(k). If k has characteristic exponent e, then
SH[1/e] (and more generally D[1/e] for any topological weave D) satisfies
topological invariance by [EK] as well as continuity. The cohomological
t-structure of Subsect. 4.3 is the homotopy t-structure in this case. By
Corollary 4.16 we obtain:

Corollary 6.3. If E ∈ SH(k)<∞ is eventually coconnective, then for every
X ∈ τStkGS there are canonical isomorphisms

Hs([X/G],E)[1e ] ≃ lim←Ð
ν

Hs(X G×
S
Uν ,E)[1e ]

for every s ∈ Z.

Consider the equivariant Borel–Moore homology groups

HBM,G
s (X;E) = πsRΓ([X/G], f !(EBG)) ≃ H−s([X/G], f !(EBG))

for s ∈ Z, where f ∶ [X/G]→ BG. The argument of Corollary 5.4 shows:

Corollary 6.4. If X is of finite dimension and E ∈ SH(S)<∞ is eventually
coconnective, then

HBM,G
s (X;E)[1e ] ≃ lim←Ð

ν

HBM
s (X

G×
S
Uν ;E)[1e ]⟨−ΩUν/S +ΩG/S⟩

for every s ∈ Z. If E is oriented, then moreover

HBM,G
s (X;E)[1e ] ≃ lim←Ð

ν

HBM
s+2dν−2g(X

G×
S
Uν ;E)[1e ](−dν + g)

for every s ∈ Z.
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Let Λ be a commutative ring in which e is invertible, and let E = Λmot ∈ SH(k)
be the Λ-linear motivic cohomology spectrum. Since the latter is 0-connective,
we obtain using the comparison between motivic Borel–Moore homology
of schemes and higher Chow groups (see [MVW, Prop. 19.18] and [CD2,
Cor. 8.12]):

Corollary 6.5. For every quasi-separated algebraic space X of finite type
over k with G-action, there are canonical isomorphisms

HBM,G
s+2n (X; Λmot)(−n) ≃ AG

n (X,s)⊗Λ

for all n, s ∈ Z, where on the right-hand side are the G-equivariant higher
Chow groups of X [EG1, §2.7].

Similarly, one has

HBM
s+2n(X; Λmot)(−n) ≃ An(X, s)⊗Λ,

where X = [X/G] and the right-hand side is defined in [EG1, §5.3] or [Kre].
We expect this comparison to generalize to all Artin stacks X of finite type
over k with affine stabilizers, cf. [BP].

Remark 6.6. The right-hand side of Corollary 6.4 indicates a definition of
G-equivariant (higher) Chow–Witt groups in terms of the Borel construction,
in such a way that the resulting theory identifies with the generalized Borel–
Moore homology theory associated with the Milnor–Witt motivic cohomology
spectrum (in a manner parallel to Corollary 6.5).

7. Algebraic K-theory

Consider the Nisnevich sheaf of spectra K ∶ Aspop → Spt which sends a
quasi-separated algebraic space X of finite type over k to its Bass–Thomason–
Trobaugh K-theory spectrum (see e.g. [Kha3, Def. 2.6, Rem. 2.15]). Write
KH ∶ Aspop → Spt for its A1-invariant version, defined by

KH(X) = limÐ→[n]∈∆op

K(X ×An)

for every X ∈ Asp, see e.g. [Kha3, §4.2]. The canonical map K(X)→ KH(X)
is invertible when X is regular.

We study the lisse extensions K◁ and KH◁. Note that with rational coef-
ficients, the presheaf K(−)Q ∶ Aspop → Spt sending X ∈ Asp to its rational-
ized K-theory spectrum K(X) ⊗Q, satisfies étale descent (see e.g. [Kha3,
Thm. 5.1]). Thus its lisse extension K(−)◁Q is the unique extension of KQ to
an étale sheaf on Artin stacks; in particular, it coincides with the construction
Két(−)Q in [Kha3, §5.2].

Let S, G, and {Uν}ν be as in Notation 3.1. Applying Corollary 3.9 to the
presheaf KH∣Schlci yields:
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Corollary 7.1. For every quasi-separated algebraic space X of finite type
over S with G-action, there is a canonical isomorphism

KH◁([X/G]) ≃ lim←Ð
ν

KH(X G×
S
Uν).

Remark 7.2. More generally, we get the same computation for any localizing
invariant of stable ∞-categories which satisfies A1-invariance. For example,
this also applies to topological K-theory (over the complex numbers) and
periodic cyclic homology in characteristic zero.

Corollary 7.3. If X is regular, then moreover

K◁([X/G]) ≃ lim←Ð
ν

K(X G×
S
Uν).

Suppose the base ring k is noetherian. Since lci morphisms are of finite
Tor-amplitude, G-theory (= algebraic K-theory of coherent sheaves) defines
a presheaf of spectra G ∶ Asplci,op → Spt on the category of quasi-separated
algebraic spaces of finite type over k and lci morphisms (see e.g. [Kha3, §3]).
Thus Corollary 3.9 yields:

Corollary 7.4. For every quasi-separated algebraic space X of finite type
over S with G-action, there is a canonical isomorphism

G◁([X/G]) ≃ lim←Ð
ν

G(X G×
S
Uν).

Definition 7.5. With notation as above, we define Borel-type G-equivariant
K-theory, KH-theory, and G-theory by

KG,◁(X) ∶= K◁([X/G]),
KHG,◁(X) ∶= KH◁([X/G]),
GG,◁(X) ∶= G◁([X/G])

for all quasi-separated algebraic spaces X of finite type over S with G-action.

Proposition 7.6. For every quasi-separated algebraic space X of finite type
over S with G-action, the spectrum GG,◁(X) is connective. If X is regular,
then the same holds for KG,◁(X).

Proof. Recall that the claim is true for G trivial (i.e., G(X) is connective),
and note that the second claim follows from the first since K(T ) ≃ G(T ) for
every (T, t) ∈ LisX when X (hence T ) is regular.

For every s > 0, we have using Corollary 7.4 the canonical surjections

π−sGG,◁(X)↠ lim←Ð
ν

π−sG(X
G×Uν) ≃ 0 (7.7)

with kernel lim←Ð
1

ν
π−s+1G(X ×GUν). We claim that the pro-system

{π−s+1G(X
G×Uν)}ν (7.8)

satisfies the Mittag–Leffler condition for every s > 0. This will imply that the
lim←Ð

1 terms vanish, hence π−sGG,◁(X) all vanish.
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By Remark 3.3 the transition map for µ > ν is the composite of the restriction
map along an open,

π−s+1G(X
G×Uµ)→ π−s+1G(X

G×(Uν ×
S
Vµ−ν))

and pull-back along the zero section of a vector bundle,

π−s+1G(X
G×(Uν ×

S
Vµ−ν))→ πs+1G(X

G×Uν).

The former is surjective if s = 1 and bijective if s > 1 (by the long-exact
localization sequence and the connectivity of G-theory of algebraic spaces),
and the latter is bijective for all s (by homotopy invariance). Thus (7.8)
has surjective transition maps and in particular satisfies the Mittag–Leffler
condition. □

We now prove Theorem D. From now on, we take S to be the spectrum of
the base commutative ring k (so that G is a group scheme over k). We begin
with the following spectrum-level formulation of equivariant Grothendieck–
Riemann–Roch:

Theorem 7.9. Suppose k is regular noetherian. Let X be a quasi-separated
algebraic space of finite type over k with G-action. Then there is a canonical
isomorphism of spectra

GG,◁(X)Q ≃∏
i∈Z

CBM,G
● (X;Qmot)⟨−i⟩.

Moreover, this isomorphism commutes with equivariant proper push-forwards
and equivariant quasi-smooth Gysin pull-backs.

Taking homotopy groups and combining with Corollary 6.5, we deduce:

Corollary 7.10. Suppose k is a field. Then for every quasi-separated al-
gebraic space X of finite type over k with G-action, there are canonical
isomorphisms

GG,◁
s (X)Q ≃∏

i∈Z
AG

i (X,s)Q

for all s ∈ Z. Moreover, these isomorphisms commute with equivariant proper
push-forwards and equivariant quasi-smooth Gysin pull-backs.

Rationally, we can also show that the lim←Ð
1 obstruction vanishes:

Corollary 7.11. Suppose k is regular noetherian. Then for every quasi-
separated algebraic space X of finite type over k with G-action, the canonical
morphisms

GG,◁
s (X)Q → lim←Ð

ν

Gs(X
G×Uν)Q

are bijective for all s ∈ Z.

Proof. In view of Corollary 7.4 there is a canonical surjection

GG,◁
s (X)Q↠ lim←Ð

ν

Gs(X
G×Uν)Q.
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Under the isomorphisms of Theorem 7.9 this is identified with the product
over i ∈ Z of the maps

πsC
BM,G
● (X;Qmot)⟨−i⟩↠ lim←Ð

ν

πsC
BM
● (X

G×Uν ;Q
mot)⟨−i − dν + g⟩,

since products commute with πs and lim←Ð. Each of these maps are bijective
by Corollary 6.4, so the claim follows. □

Corollary 7.12. Suppose k is a field and G is a smooth affine algebraic
group over k. Then for every quasi-projective scheme X over k with linearized
G-action, there is a canonical isomorphism

GG
0 (X)∧IG ≃∏

i∈Z
AG

i (X)Q

where the left-hand side is the completion of the G-equivariant G-theory of
X at the augmentation ideal IG ⊆ K0(BG).

Proof. Krishna shows in [Kri3, Thm. 9.10] that under the assumptions, the
completion GG

0 (X)∧IG agrees with the right-hand side of Corollary 7.11 for
s = 0. □

Remark 7.13. In [CJ] G. Carlsson and R. Joshua showed (under some
technical hypotheses) that the right-hand side of Corollary 7.4, and hence
GG,◁(X), agrees with the “Adams completion” of GG(X) = G([X/G]) with
respect to the augmentation map K(BG) = KG(S)→ K(S).
At the level of homotopy groups, A. Krishna studied in [Kri3] the question
of bijectivity of the map (the “Atiyah–Segal completion problem”)

GG
s (X)∧IG → lim←Ð

ν

Gs(X
G×Uν) (7.14)

for X smooth quasi-projective. He showed that this holds when X is moreover
projective and G is connected split reductive, but that it may fail for X
non-projective (even with G = Gm). In general, we can say that in the
smooth but non-projective case the Atiyah–Segal map (7.14) is invertible
with rational coefficients. Indeed, rationally both sides are isomorphic to
∏i∈ZAG

i (X,s)Q: the right-hand side by Corollaries 7.10 and Corollary 7.11,
and the left-hand side by Krishna’s version of equivariant GRR in [Kri2].

We begin the proof of Theorem 7.9, which involves some stable motivic
homotopy theory. Let KGL ∈ SH(k) denote the algebraic K-theory spectrum
over k (see [CD1, §13.1]). Set

KGL◁
X
∶= a∗(KGL), Qmot,◁

X
∶= a∗(Qmot) ∈ SH◁(X)

for every X ∈ τStk with structural morphism a ∶ X→ Spec(k), where Qmot ∈
SH(k) is the rational motivic cohomology spectrum as in Corollary 6.5. We
begin by generalizing the Adams decomposition of KGLQ (see [Ri], [CD1,
§14.1]) to stacks.

Proposition 7.15.
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(i) For every Y ∈ τStk, there is a canonical isomorphism

KGL◁
Y,Q ≃⊕

i∈Z
Qmot,◁

Y
⟨i⟩. (7.16)

If Y is smooth then there is also a canonical isomorphism

KGL◁
Y,Q ≃∏

i∈Z
Qmot,◁

Y
⟨i⟩. (7.17)

(ii) For every morphism f ∶ X → Y in τStk with Y smooth, there is a
canonical isomorphism

f∗f !(KGL◁
Y,Q)→∏

i∈Z
f∗f !(Qmot,◁

Y
)⟨i⟩ (7.18)

in SH◁(Y).

Proof. Consider the canonical morphisms

⊕
i∈Z

Qmot⟨i⟩→ KGLQ →∏
i∈Z

Qmot⟨i⟩

in SH(k). The first is invertible by [Ri, Thm. 5.3.10]. The composite is also
invertible: for every smooth k-scheme X and s ⩾ 0, it induces an isomorphism
on H−s(X,−) since

H−s(X,Qmot⟨i⟩) ≃ H2i−s(X;Q(i)) ≃ GriγKs(X)Q

vanishes for i < 0 and i≫ 0. The second isomorphism uses the fact that X is
smooth over k and hence regular (see [CD1, Cor. 14.2.14]).

The isomorphisms in the first claim follow by ∗-inverse image along a ∶ Y→
Spec(k), which commutes with colimits (resp. limits when Y is smooth). The
second claim then follows since f ! and f∗ commute with limits. □

Proof of Theorem 7.9. For every X as in the statement we have by Proposi-
tion 7.15 a canonical isomorphism f∗f !(KGL◁BG,Q) ≃ ∏i∈Z f∗f !(Qmot,◁

BG )⟨i⟩
where f ∶ [X/G]→ BG is the projection. Formation of derived global sections
commutes with limits, so as X varies this gives the canonical isomorphism

CBM,G
● (−;KGLQ) ≃∏

i∈Z
CBM,G
● (−;Qmot)⟨i⟩.

The claim follows by combining this with the canonical isomorphism

GG,◁(−) ≃ CBM,G
● (−;KGL)

obtained by lisse-extending the isomorphism G(−) ≃ CBM● (−;KGL) of sheaves
of spectra on Schlci (see [Jin]). The first displayed isomorphism commutes
with equivariant proper push-forwards and equivariant quasi-smooth Gysin
pull-backs by construction. The second displayed isomorphism commutes
with equivariant proper push-forwards by the arguments of [Jin, §3.1] and
with equivariant quasi-smooth Gysin pull-backs by [Kha3, §6.2]. □
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8. Algebraic bordism

Let S = Spec(k), G an affine algebraic group over k, and {Uν}ν as in
Notation 3.1. Corollary 6.2 applied to the algebraic cobordism spectrum
MGL ∈ SH(k) (and its Tate twists) shows that the associated equivariant
Borel–Moore theory can be computed, at the level of spectra, by the Borel
construction:

Corollary 8.1. For every X ∈ τStkGS and r, s ∈ Z there are canonical isomor-
phisms of spectra

CBM,G
● (X;MGL) ≃ lim←Ð

ν

CBM
● (X

G×Uν ;MGL)⟨−dν + g⟩

where dν = dim(Uν) and g = dim(G).

Recall that if X is a quasi-projective k-scheme with linearized G-action, then
each X ×GUν is a quasi-projective k-scheme (Remark 3.6). Thus in this
case Corollary 8.1 computes the G-equivariant bordism of X in terms of
non-equivariant bordism of schemes.

When k is a field of characteristic zero, there is an identification

HBM
2n (X;MGL)(−n) ≃ Ωn(X),

for all quasi-projective k-schemes X, of the (2∗,∗)-graded part of Borel–Moore
homology with coefficients in MGL, with the (lower) algebraic bordism theory
defined by Levine and Morel (see [LM, Lev]).

Building on the theory Ω∗(−), Heller and Malagón-López defined in [HML] a
(lower) G-equivariant algebraic bordism theory by the formula

ΩG,HML
n (X) ∶= lim←Ð

ν

Ωn+dν−g(X
G×Uν) (8.2)

for X quasi-projective with linearized G-action. By Corollary 8.1, the canon-
ical surjection from the homotopy groups of a homotopy limit to the limit of
its homotopy groups reads in this case

π0C
BM,G
● (X;MGL)⟨−n⟩

↠ lim←Ð
ν

π0C
BM
● (X

G×Uν ;MGL)⟨−n − dν + g⟩ ≃ ΩG,HML
n (X) (8.3)

for every n ∈ Z. Since MGL ∈ SH(k) is not eventually coconnective, we cannot
apply Corollary 6.4 to deduce that the above map is invertible. Nevertheless,
we can show this holds after rationalization:

Theorem 8.4. Let k be a field of characteristic zero, G an affine algebraic
group, and X a quasi-projective k-scheme with linearized G-action. Then
the canonical map

π0C
BM,G
● (X;MGLQ)⟨−n⟩↠ ΩG,HML

n (X)Q
is invertible for every n ∈ Z.
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We begin with the analogue of Proposition 7.15 for MGL. For X ∈ τStk with
structural morphism a ∶ X→ Spec(k), set MGL◁

X
∶= a∗(MGL) ∈ SH◁(X) and

Qmot,◁
X

∶= a∗(Qmot).

Proposition 8.5.

(i) For every Y ∈ τStk, there is a canonical isomorphism

MGL◁
Y,Q ≃⊕

i⩾1
Qmot,◁

Y
⟨i⟩. (8.6)

If Y is smooth then there is also a canonical isomorphism

MGL◁
Y,Q ≃∏

i⩾1
Qmot,◁

Y
⟨i⟩. (8.7)

(ii) For every morphism f ∶ X → Y in τStk with Y smooth, there is a
canonical isomorphism

f∗f !(MGL◁
Y,Q)→∏

i⩾1
f∗f !(Qmot,◁

Y
)⟨i⟩ (8.8)

in SH◁(Y).

Proof. Recall that there is a canonical decomposition MGLQ ≃⊕i⩾1Q⟨i⟩ in
SH(k) (see [NSØ, Cor. 10.6]). Hence one may argue exactly as in the proof
of Proposition 7.15, using the vanishing of GriγKs(X)Q for i≫ 0. □

Proof of Theorem 8.4. For every finite type k-scheme Y with action of an
affine algebraic group H, we have natural isomorphisms

CBM,H
● (Y ;MGLQ) ≃∏

i⩾1
CBM,H
● (Y ;Q)⟨i⟩ (8.9)

by Proposition 8.5 applied to f ∶ [Y /H]→ BH. Under these isomorphisms,
the surjection

π0C
BM,G
● (X;MGLQ)⟨−n⟩

↠ lim←Ð
ν

π0C
BM
● (X

G×Uν ;MGLQ)⟨−n − dν + g⟩ ≃ ΩG,HML
n (X)Q

(8.10)

is identified with the product over i ⩾ 1 of the maps

π0C
BM,G
● (X;Qmot)⟨−n + i⟩↠ lim←Ð

ν

π0C
BM
● (X

G×Uν ;Q
mot)⟨−n + i − dν + g⟩,

since products commute with π0 and lim←Ð. Each of these maps are bijective
by Corollary 6.4, so the claim follows. □
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With integral coefficients, we suspect that (8.3) may not be invertible in
general.13 We propose that the “correct” definition14 of ΩG

n (−) should satisfy

ΩG
n (X) ≃ π0CBM,G

● (X;MGL)⟨−n⟩. (8.11)

By the general properties of the construction CBM● (−;E), for E ∈ SH(k),
ΩG∗ (−) admits proper push-forwards and quasi-smooth Gysin pull-backs,
and satisfies homotopy invariance and the projective bundle formula. We
will now show that it also satisfies the right-exact localization property15.
In [AKLPR1, AKLPR2] it is shown that it also satisfies the equivariant
concentration and localization theorems.

Theorem 8.12. Let k be a perfect field, G an affine algebraic group over k,
and X a quasi-separated algebraic space of finite type over k with G-action.
Then we have:

(i) For every G-equivariant closed immersion i ∶ Z →X with complementary
open immersion j ∶ U →X, the localization sequence

HBM,G
2n (Z;MGL)(−n)

i∗Ð→ HBM,G
2n (X;MGL)(−n) j∗Ð→ HBM,G

2n (U ;MGL)(−n)→ 0.

is exact.

(ii) For every integer n ∈ Z, the spectrum CBM,G● (X;MGL)⟨−n⟩ is connec-
tive. That is, we have

HBM,G
s (X;MGL)(−r) = 0

for all r, s ∈ Z with s < 2r.

Proof. The localization exact triangle

CBM,G
● (Z;MGL)→ CBM,G

● (X;MGL)→ CBM,G
● (U ;MGL)

induces a long exact sequence in HBM,G
∗ (−;MGL)(−n) for every n ∈ Z. In

particular we have the exact sequence

HBM,G
2n (Z;MGL)(−n) i∗Ð→ HBM,G

2n (X;MGL)(−n) j∗Ð→ HBM,G
2n (U ;MGL)(−n)

∂Ð→ HBM,G
2n−1 (Z;MGL)(−n).

This shows that the second claim implies the first.

13For X smooth projective and G connected and split reductive, we expect that (8.3) is
invertible by arguments similar to those in [Kri3, §§6-7].

14Of course, one could take this as a definition, but by convention ΩG
∗ (−) should be

a “geometrically” defined theory as in [LM]. More precisely, for every n there should be
geometrically defined sheaves of spectra on quasi-projective k-schemes, analogous to the
Bloch cycle complexes, whose hypercohomologies compute Ωn(−). (For smooth schemes X,
such has been constructed in [EHKSY2, Thm. 3.4.1(ii)], using finite quasi-smooth derived
schemes over X as generators.) Then the G-equivariant versions of these spectra should be
defined by the Borel construction, i.e., via a homotopy limit as in Corollary 8.1. Finally,
ΩG

n (−) should be defined as the π0 of this spectrum-level G-equivariant bordism theory.
15Although it is claimed in [HML, Thm. 20] that the same holds for ΩG,HML

∗ (−), there
is a well-known gap in their proof.
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We now demonstrate claim (ii) in the case of G the trivial group. If X is
a smooth scheme, then by Poincaré duality the claim is equivalent to the
vanishing of Hq(X;MGL(p)) for q > 2p, see e.g. [BKWX, Thm. B.1]. In
general, the schematic locus defines a dense open U ⊆X (see [SP, Tag 06NH]).
Since the field k is perfect, the smooth locus V of U is a further dense open.
Using the localization sequence

HBM
s (Z;MGL)(−r)→ HBM

s (X;MGL)(−r)→ HBM
s (V ;MGL)(−r),

where Z ⊆X is the reduced closed complement, we conclude by noetherian
induction.

For the case of general G, the proof is similar to that of Proposition 7.6. We
claim that for every n ∈ Z the pro-system

{π0CBM
● (X

G×Uν ;MGL)⟨−n − dν⟩}ν (8.13)

satisfies the Mittag–Leffler condition. Indeed, by Remark 3.3 the transition
map for µ > ν is by construction the composite of the restriction map along
an open,

π0C
BM
● (X

G×Uµ;MGL)⟨−n − dµ⟩→ π0C
BM
● (X

G×(Uν × Vµ−ν);MGL)⟨−n − dµ⟩
and Gysin pull-back along the zero section of a vector bundle,

π0C
BM
● (X

G×(Uν × Vµ−ν);MGL)⟨−n − dµ⟩→ π0C
BM
● (X

G×Uν ;MGL)⟨−n − dν⟩.
By claim (i) in the case of G trivial, the former is surjective. By homotopy
invariance, the latter is invertible. Thus the pro-system (8.13) has surjective
transition maps and in particular satisfies the Mittag–Leffler condition.

Using Corollary 8.1, we have the canonical surjections

π−1CBM,G
● (X;MGL)⟨−n⟩↠ lim←Ð

ν

π−1CBM
● (X

G×Uν ;MGL)⟨−n − dν + g⟩ (8.14)

with kernel lim←Ð
1

ν
π0C

BM● (X ×GUν ;MGL)⟨−n − dν⟩. The latter vanishes by the
Mittag–Leffler condition verified above. Hence in that case, Claim (i) for G
trivial implies that the target vanishes, hence so does the source.

Now, by induction we see that the pro-system {π−s+1CBM● (X ×GUν ;MGL)⟨∗⟩}ν
vanishes for all s > 1. Arguing by the Milnor exact sequence again, we have
bijectivity of (8.14) for all lower homotopy groups as well, and we conclude
again by Claim (i) for G trivial. This shows claim (ii). □

Combining with Theorem 8.4, we deduce that the theory of [HML] satisfies
the right-exact localization property with rational coefficients:

Corollary 8.15. Let k be a field of characteristic zero, G an affine algebraic
group over k, and X a quasi-projective k-scheme with linearized G-action.
Then for every G-equivariant closed immersion i ∶ Z →X with complementary
open immersion j ∶ U →X, the localization sequence

ΩG,HML
n (Z)Q

i∗Ð→ ΩG,HML
n (X)Q

j∗Ð→ ΩG,HML
n (U)Q → 0.

is exact.
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9. Categorification

Let D ∶ Schop → Pres be a τ -sheaf with values in the ∞-category Pres of
presentable ∞-categories and left adjoint functors. Denote by D◁ ∶ τStkop →
∞-Cat its lisse extension as in Definition 1.2. Given a morphism f ∶ X→ Y

we denote the induced functor by f∗ = D(f) ∶ D(Y) → D(X), and by
f∗ ∶D(X)→D(Y) its right adjoint.

We will assume that D satisfies the following two properties:

(i) Local A1-invariance: for every X ∈ Sch, the unit morphism

id→ π∗π∗

is fully faithful, where π ∶X ×A1 →X is the projection. In other words,
π∗ ∶D(X)→D(X ×A1) is fully faithful.

(ii) Smooth base change formula: for every cartesian square in Sch

X ′ Y ′

X Y,

g

u v

f

the base change transformation

v∗f∗
unitÐÐ→ g∗g∗v∗f∗ ≃ g∗u∗f∗f∗

counitÐÐÐ→ g∗u∗

is invertible.

For example, we may take D = SH (with τ = Nis, see Sect. 6) or more
generally any topological weave in the sense of [Kha4].

Fix S, G, and {Uν}ν as in Notation 3.1. For every X ∈ τStkGS we consider
the square

X ×S Uν X

X ×GS Uν [X/G]

pν

vν u

qν

(9.1)

where pν and qν are the projections, and u and vν are the quotient maps.

Theorem 9.2. For every F ∈D◁([X/G]), the unit maps induce a canonical
isomorphism

F → lim←Ð
ν

qν,∗q∗ν(F)

in D◁([X/G]).

Proof. For a fixed F ∈D◁([X/G]), the presheaf

F ∶ τLisStkop[X/G] →D◁([X/G])

sending (T, t ∶ T → [X/G]) ↦ t∗t∗(F) is, by construction, lisse-extended
from its restriction to Lis[X/G]. Thus the claim follows from Proposition 2.5
applied to F ∣Lis[X/G] . □
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Consider the right Kan extension of D◁ to ind-objects, so that

D◁(X ×
S
{Uν}ν) ≃ lim←Ð

ν

D◁(X ×
S
Uν), D◁(X G×

S
{Uν}ν) ≃ lim←Ð

ν

D◁(X G×
S
Uν)

where the transition functors are ∗-inverse image. We have the induced
functors

p∗ = (p∗ν)ν ∶D◁(X)→D◁(X ×
S
{Uν}ν),

q∗ = (q∗ν)ν ∶D◁([X/G])→D◁(X G×
S
{Uν}ν). (9.3)

Corollary 9.4. The functor (9.3) is fully faithful.

Proof. The functor q∗ admits as right adjoint (Fν) ↦ lim←Ðν
qν,∗Fν , so fully

faithfulness amounts to invertibility of the unit map

F → lim←Ð
ν

qν,∗q∗ν(F)

for all F ∈D([X/G]), which is the assertion of Theorem 9.2. □

We say that the group scheme G is Nisnevich-special if the quotient morphism
S ↠ [S/G] = BG admits Nisnevich-local sections, i.e., if every étale G-torsor
is Nisnevich-locally trivial. For example, this includes special group schemes
in the sense of Serre such as GLn,S .

Corollary 9.5. If τ = ét or G is Nisnevich-special, then the squares (9.1)
induce a cartesian square of ∞-categories

D◁([X/G]) D◁(X ×GS {Uν}ν)

D◁(X) D◁(X ×S{Uν}ν).

q∗

u∗ v∗

p∗

Remark 9.6. If τ = Nis and G is not Nisnevich-special, then one still has a
cartesian square of ∞-categories

D◁([X/G]) D◁(X ×GS {Uν}ν)

D◁(Y ) D◁(Y ′ ×GS {Uν}ν),

q∗

u∗ v∗

p∗

where u ∶ Y ↠ [X/G] is any smooth morphism with Nisnevich-local sections
and Y ′ → Y is the G-torsor classified by Y → [X/G] → BG, since u∗ is
conservative in this case.

Lemma 9.7. With notation as above, suppose that X is a scheme. Then
the cartesian square

X ×S{Uν}ν X

X ×GS {Uν}ν [X/G]

p

v u

q
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satisfies the smooth base change formula. That is, the natural transformation

u∗q∗
unitÐÐ→ p∗p∗u∗q∗ ≃ p∗v∗q∗q∗

counitÐÐÐ→ p∗v∗

is invertible.

Proof. This is the limit over n of the natural transformations

u∗qν,∗ → pν,∗v∗ν ,

associated to the squares (9.1). Using descent for the Čech nerve of u ∶X ↠
[X/G] and its base change vν , which we denote X● and Y● respectively, [GR,
Vol. I, Pt. I, Chap. 1, 2.6.4] implies that this is map is in turn the limit of
the corresponding natural transformations for all the squares

Ym+1 Xm+1

Ym Xm

pm

di di

qm

where the horizontal arrows are base changed from q and p and the vertical
arrows di are the face maps (for 0 ⩽ i ⩽ m). By the smooth base change
formula for schemes (ii), these are invertible for all m and all i. □

Lemma 9.8. Suppose given a commutative square of ∞-categories

C C ′

D D ′

q∗

u∗ v∗

p∗

where p∗ and q∗ are fully faithful with respective right adjoints p∗ and q∗,
the base change transformation

u∗q∗
unitÐÐ→ p∗p∗u∗q∗ ≃ p∗v∗q∗q∗

counitÐÐÐ→ p∗v∗

is invertible, and v∗ is conservative. Then the essential image of q∗ is spanned
by objects c′ ∈ C ′ for which v∗(c′) belongs to the essential image of p∗.

Proof. Note that an object c′ ∈ C ′ belongs to the essential image of q∗ if
and only if the counit q∗q∗(c′) → c′ is invertible. Indeed, the condition is
clearly sufficient. Conversely, suppose c′ ≃ q∗(c) for an object c ∈ C . By the
adjunction identities, the composite

q∗(c) unitÐÐ→ q∗q∗q∗(c)
counitÐÐÐ→ q∗(c)

is the identity. Since q∗ is fully faithful, the first arrow is invertible. It follows
that the second arrow is also invertible.

Now since v∗ is conservative, invertibility of the counit q∗q∗(c′) → c′ is
equivalent to invertibility of

counit ∶ p∗p∗v∗(c′) ≃ p∗u∗q∗(c′) ≃ v∗q∗q∗(c′)
counitÐÐÐ→ v∗(c′)

where we have used the base change isomorphism. As in the first paragraph,
since p∗ is fully faithful this is equivalent to the condition that v∗(c′) belongs
to the essential image of p∗. □
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Proof of Corollary 9.5. Given (T, t) ∈ Lis[X/G], we may form the base change
of the squares (9.1) along t ∶ T → [X/G] to get

T ′ ×S{Uν}ν T ′

T ×BG{Uν/G}ν T

pT

vT uT

qT

where T ′ → T ≃ [T ′/G] is the G-torsor classified by T → [X/G] → BG. By
definition of D◁, the square in question is the limit over (T, t) of the squares

D◁(T ) D◁(T ×BG{Uν/G}ν)

D◁(T ′) D◁(T ′ ×S{Uν}ν).

q∗T

u∗T v∗

p∗

We may therefore replace X by T ′ and thereby assume that X is a scheme.

By Corollary 9.4 the upper horizontal arrow is fully faithful. The same
holds for the lower horizontal arrow (note that {Uν}ν also serves as a Borel
construction for the trivial group). This implies that the square is cartesian
on mapping spaces. Essential surjectivity of the functor

D◁([X/G])→D◁(X) ×
D◁(X ×S{Uν}ν)

D◁(X G×
S
{Uν}ν)

then follows from Lemma 9.8 in view of the base change formula u∗q∗ ≃ p∗v∗
(Lemma 9.7) and the conservativity of v∗ (since u and hence v admits τ -local
sections). □
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