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Abstract. We extend Poincaré duality in étale cohomology from smooth
schemes to regular ones. This is achieved via a formalism of trace maps
for local complete intersection morphisms.

Let S be a base scheme and let Λ denote the constant sheaf Z/nZ for an
integer n which is invertible on S. For a locally of finite type1 S-scheme X,
define the Borel–Moore homology2 of X (relative to S) as cohomology with
coefficients in KX ∶= f !(Λ), i.e.,

H∗(X/S,Λ) = H−∗(X,KX)
where f ∶ X → S is the structural morphism. Our starting point is the
following classical result:

Theorem 1 (Poincaré duality). Let X be a smooth S-scheme of relative
dimension d. Then there is a canonical isomorphism

f !(Λ) ≃ Λ(d)[2d]
in the derived category D(Xét,Λ) of étale sheaves of Λ-modules on X, where
f ∶ X → S is the structural morphism. In particular, there is a canonical
isomorphism

H∗(X/S,Λ) ≃ H2d−∗(X,Λ(d)). (1)

See [SGA4, Exp. XVIII, Thm. 3.2.5], and [LZ, Thm. 0.1.4] in case X is not
separated of finite type. Theorem 1 is proven by constructing a formalism of
traces3

trf ∶ f!Λ(d)[2d]→ Λ

for flat morphisms f whose geometric fibres are of dimension ⩽ d (see [SGA4,
Exp. XVIII, Thm. 2.9]). By adjunction the trace gives rise to a fundamental
class

[X] ∈ H2d(X/S,Λ)(−d),

Date: 2021-09-19.
1Classically, the !-operations were constructed for compactifiable morphisms between

quasi-compact quasi-separated schemes (see [SGA4, Exp. XVII]), which by Nagata is the
class of separated morphisms of finite type. In [LZ], they were extended to locally of finite
type morphisms.

2If S is regular and f ∶X → S is separated of finite type, then KX is a dualizing complex
on X by [ILO, Exp. XVII, Thm. 0.2]. Professor Illusie has informed me that this definition
of “Borel–Moore homology”, as cohomology with coefficients in KX , is in fact due to
Grothendieck. See also [La1, §2].

3Throughout the note, all functors are implicitly derived (wherever necessary).
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and the isomorphism (1) can be realized as cap product with [X].

In this paper our goal is to prove an “absolute” version of Theorem 1, where
X is a regular scheme over a regular base scheme S, and the morphism
f ∶ X → S is only assumed to be locally of finite type. To that end we
construct a formalism of traces for local complete intersection morphisms.

Theorem A. Let X and Y be schemes on which n is invertible. For every
local complete intersection morphism f ∶X → Y of relative virtual dimension
d, there is a canonical morphism

trf ∶ f!Λ(d)[2d]→ Λ,

in D(Yét,Λ) satisfying the following properties:

(i) Functoriality. Given another local complete intersection morphism
g ∶ Y → Z of relative virtual dimension e, the composite g ○ f is a
local complete intersection morphism of relative virtual dimension
d + e, and there is a commutative diagram

g!f!Λ(d)[2d](e)[2e] g!Λ(e)[2e]

(g ○ f)!Λ(d + e)[2d + 2e] Λ

trg

trg○f

in D(Zét,Λ). If f = idX , then trf = id ∶ Λ→ Λ.

(ii) Transverse base change. Given any morphism q ∶ Y ′ → Y , form the
cartesian square

X ′ Y ′

X Y.

g

p q

f

If this square is Tor-independent (e.g. if q is flat), then g is a local
complete intersection morphism of relative virtual dimension d, and
there is a commutative square

g!Λ(d)[2d] Λ

q∗f!Λ(d)[2d] q∗Λ

trg

q∗(trf )

in D(Y ′
ét,Λ).

(iii) Purity. Denote by

gysf ∶ Λ(d)[2d]→ f !Λ

the morphism in D(Yét,Λ) obtained from trf by transposition. If f
smooth, or if X and Y are regular, then gysf is an isomorphism.

(iv) If f is smooth, then trf agrees with the trace morphism of [SGA4,
Exp. XVIII, Thm. 2.9] (or rather [LZ, Thm. 0.1.4] in the non-
compactifiable case).
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(v) If f is a regular closed immersion, then gysf coincides with the Gysin

morphism Clf ∶ Λ → f !Λ(−d)[−2d] constructed in [ILO, §2.3] and
[Azu, §1] (that is, gysf = Clf(d)[2d]). In particular, it refines the
local cycle class of [Cycle, §2.2].

Here local complete intersection (lci) morphisms are defined as in [SGA6,
Exp. VIII, §1, Déf. 1.1]. For us the relevant description will be as follows: a
morphism of schemes is lci if and only if it is locally of finite presentation
and has perfect relative cotangent complex of Tor-amplitude [−1,0] (under
cohomological grading conventions). See e.g. [KRy, Prop. 2.3.14] for this
equivalence.4

Remark 1. Fix a base scheme S on which n is invertible. From Theorem A
we can now read off:

(i) If X is an lci S-scheme of relative virtual dimension d then it admits
a fundamental class

[X] ∈ H2d(X/S,Λ)(−d),

given by the morphism gysp(−d)[−2d] ∶ Λ → p!Λ(−d)[−2d], where

p ∶X → S is the structural morphism.5

(ii) If X and S are regular and d = dim(X) − dim(S), then gysp ∶ p!Λ ≃
Λ(d)[2d] gives rise to canonical isomorphisms (“absolute Poincaré
duality”)

∩[X] ∶ H∗(X,Λ)→ H2d−∗(X/S,Λ)(−d).
(iii) For any lci morphism f ∶X → Y between S-schemes, gysf ∶ Λ(d)[2d]→

f !Λ gives rise to Gysin pull-backs

f ! ∶ H∗(Y /S,Λ)→ H∗+2d(X/S,Λ)(−d).
(iv) For any proper lci morphism f ∶X → Y of relative virtual dimension

d, trf gives rise to Gysin push-forwards in cohomology

f! ∶ H∗(X,Λ)→ H∗−2d(Y,Λ(−d)).

Remark 2. Claim (iii) in Theorem A contains in particular the state-
ment that for any closed immersion i ∶ X → Y between regular schemes
X and Y , there is an isomorphism i!(Λ)(d)[2d] ≃ Λ in D(Xét,Λ). This is
Grothendieck’s absolute purity conjecture, proven by Gabber (see [SGA5,
Exp. I, 3.1.4], [Azu], [ILO, Exp. XVI, Thm. 3.1.1]). However, the proof of
(iii) uses this as input, i.e., we do not provide a new proof of absolute purity.

4Surprisingly, this does not appear in [SGA6] or other classical references. In fact, it
seems to be a common misconception that this requires noetherianness or that it relies on
Quillen’s conjecture.

5If S is a field and X is quasi-projective, then this is the image of the fundamental class
in the Chow group Ad(X) by the cycle class map.
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1. Deformation to the normal stack

The main ingredient is deformation to the normal stack, a variant of defor-
mation to the normal cone that makes sense not just for closed immersions.

Given an lci morphism f ∶ X → Y of schemes, the normal stack NX/Y
is the “total space” of the (−1)-shifted cotangent complex LX/Y [−1]. To
make sense of this, recall that the total space construction E ↦ VX(E) =
SpecX(SymOX

(E)) defines an equivalence between finite locally free sheaves
and vector bundles over X. This extends to an equivalence between perfect
complexes of Tor-amplitude [0,1] and vector bundle stacks over X, so that
we can write

NX/Y ∶= VX(LX/Y [−1]).

See [Kh, §1.3], [BF, §2], [SGA4, Exp. XVIII, §1.4]. In [BF] this is called
the “intrinsic normal cone” or “intrinsic normal sheaf” (they agree for lci
morphisms).

If f is a closed immersion, then LX/Y [−1] is just the conormal sheaf in
degree zero so NX/Y is just the normal bundle. In general, LX/Y [−1] will
typically have nonzero cohomology in degree 1, which is why NX/Y will only
exist as an algebraic stack. For example if f is smooth then LX/Y [−1] is the
cotangent sheaf in degree −1, so NX/Y is the classifying stack BTX/Y of the
tangent bundle (viewed as a group scheme over X under addition). If there
is a global factorization of f through a regular immersion i ∶X ↪M and a
smooth morphism p ∶M → Y , then NX/Y is isomorphic to the stack quotient

NX/Y ≃ [NX/M/i∗TM/Y ]

where NX/M is the normal bundle of i and TM/Y is the relative tangent
bundle of p. No choices are involved in the definitions of LX/Y and NX/Y ,
i.e., they are intrinsic to f .

Deformation to the normal stack is an A1-family of algebraic stacks which
deforms f ∶X → Y to the zero section 0 ∶X → NX/Y .

Theorem 2. Let f ∶ X → Y be an lci morphism. Then there exists a
commutative diagram of algebraic stacks

X X ×A1 X ×Gm

NX/Y DX/Y Y ×Gm

Y Y ×A1 Y ×Gm

0

0 f×id

î ĵ

0

(2)

where each square is cartesian and Tor-independent.

Proof. See [Kr, §5.1] and [Ma, Thm. 2.31]. At the referee’s request we include
the more “intrinsic” construction using derived algebraic geometry mentioned
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in [Kh, §1.4] (a more general and detailed version of the following argument
will appear in [HKR]).

Denote by DX/Y → Y ×A1 the derived Weil restriction of f ∶X → Y along

0 ∶ Y → Y ×A1. Thus DX/Y is a derived stack such that for a derived scheme

T over Y ×A1, the T -points of DX/Y are given by

HomY ×A1(T,DX/Y ) ≃ HomY (T
R
×
A1

0,X) (3)

where T ×RA1 0 is the derived fibre over 0. In particular, for every derived
scheme T0 over Y , we have natural isomorphisms

HomY (T0,DX/Y
R
×
A1

0) ≃ HomY ×A1(T0,DX/Y )

≃ HomY (T0
R
×
A1

0,X) ≃ HomY (T0,NX/Y )

where T0 is regarded over Y ×A1 by composing with 0 ∶ Y → Y ×A1, and
the last isomorphism comes from the identification

T
R
×
A1

0 = T ×
0

0
R
×
A1

0 ≃ SpecT (OT ⊕OT [1])

with the trivial square-zero extension (in the derived sense) over T and the
universal property of the cotangent complex in derived algebraic geometry.
By the Yoneda lemma it follows that NX/Y is the derived fibre of DX/Y →A1

over 0. Similarly, the fibre over Gm is Y ×Gm since

HomY ×Gm(Tη,DX/Y ×
A1

Gm) ≃ HomY ×A1(Tη,DX/Y )

≃ HomY (Tη ×
Gm

Gm ×
A1

0,X) ≃ HomY (∅,X)

is naturally isomorphic to HomY ×Gm(Tη, Y × Gm) ≃ {∗} for all Tη over
Y ×Gm.

Through (3) we get a canonical morphism X ×A1 →DX/Y corresponding to

idX ∈ HomY (X,X), which factors f × id ∶X ×A1 → Y ×A1. The commuta-
tivity of the two upper squares in (2) is witnessed by two isomorphisms in
the mapping ∞-groupoids

HomY ×A1(X,DX/Y ) ≃ HomY (X × 0
R
×
A1

0,X),

HomY ×A1(X ×Gm,DX/Y ) ≃ HomY (X ×Gm ×
A1

0,X) ≃ {∗}.

Both squares are homotopy cartesian since the lower two squares and both
vertical composite rectangles are.

So far we have constructed the diagram (2) in the ∞-category of derived stacks.
To show that DX/Y is algebraic, we can appeal to either of two algebraicity
results for derived Weil restrictions. The first is [HP, Thm. 5.1.1], which
is stated for mapping stacks but applies in view of the formula for derived
Weil restriction in Proposition 5.1.14 of op. cit. Alternatively, in our lci
situation there is a more general and easier result in [HKR]. Briefly, the
question of algebraicity is local, so using the local structure of lci morphisms
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([KRy, Prop. 2.3.14]) and the fact that derived Weil restriction commutes
with fibred products, it boils down to the case where X = VY (E) is a vector
bundle over Y , whose derived Weil restriction along 0 ∶ Y → Y ×A1 is the
vector bundle stack

VY ×A1(0∗(E∨)∨).
This argument also shows that DX/Y is in fact a classical algebraic stack.
Thus (2) is a diagram in the ordinary category of algebraic stacks, and
homotopy cartesianness of the squares translates to cartesianness and Tor-
independence. �

2. Borel–Moore homology of stacks

Using the extension of the six operations to algebraic stacks defined in [LZ]6

we can define Borel–Moore homology of an algebraic stack X (locally of finite
type over some base S) again by the formula

Hk(X /S,Λ) = H−k(X , p!(Λ))
where p ∶ X → S is the structural morphism. Equivalently, these are the
homology groups of the complexes

RΓ(X /S,Λ) ∶= RΓ(X , p!Λ)
≃ Rlim←Ð

(T,t)
RΓ(T, t∗p!Λ) ≃ Rlim←Ð

(T,t)
RΓ(T, (p ○ t)!Λ)(−dt)[−2dt],

where the homotopy limits are over pairs (T, t) where T is a scheme and
t ∶ T → X is a smooth morphism of relative dimension dt. (By Zariski descent,
T can also be taken affine.)

It is straightforward to deduce that the localization exact triangle extends
to stacks:

Proposition 1 (Localization). If i ∶ Z → X is a closed immersion with open
complement j ∶ U → X , then we have an exact triangle

RΓ(Z/S,Λ) i∗Ð→RΓ(X /S,Λ)
j!

Ð→RΓ(U/S,Λ),
whence a long exact sequence

⋯→ Hk(Z/S,Λ) i∗Ð→ Hk(X /S,Λ)
j!

Ð→ Hk(U/S,Λ) ∂Ð→ Hk−1(Z/S,Λ)→ ⋯.

For example, consider the closed/open pair (̂i, ĵ) from (2). The boundary
map gives rise to a specialization map

spX/Y ∶ RΓ(Y /Y,Λ) inclÐÐ→RΓ(Y /Y,Λ)⊕RΓ(Y /Y,Λ)(1)[1]

≃ RΓ(Y ×Gm/Y,Λ)[−1] ∂Ð→RΓ(NX/Y /Y,Λ). (4)

We will also need homotopy invariance for vector bundle stacks:

6If we work over a base satisfying some strong hypotheses, which hold e.g. for spectra of
finite or separably closed fields, then we can also use the formalism of [LO]; cf. [LZ, §6.5].
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Proposition 2. Let E be the total space of a perfect complex of Tor-
amplitude [0,1] over X, say of virtual rank r. Then there is a canonical
isomorphism in the derived category of Λ-modules

RΓ(E/Y,Λ) ≃ RΓ(X/Y,Λ)(r)[2r].

In particular,

Hk(E/Y,Λ) ≃ Hk−2r(X/Y,Λ)(r)
for all k ∈ Z.

Proof. Since the projection π ∶ E →X is smooth of relative dimension r, we
have the Poincaré duality isomorphism

RΓ(E , π!f !Λ) ≃ RΓ(E , f !Λ)(r)[2r],

where there is an implicit π∗ on the right-hand side. This is the homotopy
limit over (T, t) of the Poincaré duality isomorphisms

RΓ(T, (π ○ t)!f !Λ)(−dt)[−2dt] ≃ RΓ(T, f !Λ)(r)[2r]

for the smooth morphism π ○ t ∶ T → X → Y of relative dimension dt + r.7

Secondly, there is a canonical map

π∗ ∶ RΓ(X,f !Λ)→RΓ(E , f !Λ)

which (as a consequence of étale descent) can be described as the homotopy
limit of the maps π∗U , where πU ∶ E ×Y U → U , taken over smooth morphisms
U → Y with U affine. Therefore the claim is local on Y and we may assume
that the perfect complex defining E admits a global resolution, so that E is
globally the stack quotient [E1/E0] of a vector bundle morphism E0 → E1.
In this case π∗ factors through isomorphisms

RΓ(X,f !Λ)→RΓ(E1, f !Λ)←RΓ(E , f !Λ)

by homotopy invariance for the vector bundle E1 → X (follows by descent
from the case of trivial bundles, see [SGA4, Exp. XV, Cor. 2.2]) and for the
E0-torsor E1 ↠ E (can be checked after base change to affines, over which
vector bundle torsors are split). �

3. The construction

We return to the situation of an lci morphism f ∶X → Y , say of relative virtual
dimension d. The (−1)-shifted cotangent complex LX/Y [−1] is perfect of
Tor-amplitude [0, 1] (of virtual rank −d), so Proposition 2 yields a canonical
isomorphism

RΓ(NX/Y /Y,Λ) ≃ RΓ(X/Y,Λ)(−d)[−2d].

7Note that to form this homotopy limit, we need the Poincaré duality isomorphism for
schemes to be functorial in a homotopy coherent sense; however, this coherence comes for
free using a standard t-structure argument, see [LZ, Thm. 6.2.9, Rem. 4.1.10].
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Combining this with the specialization map (4) produces now a canonical
map

RΓ(Y /Y,Λ)
spX/YÐÐÐ→RΓ(NX/Y /Y,Λ) ≃ RΓ(X/Y,Λ)(−d)[−2d].

In particular, the image of the unit 1 ∈ RΓ(Y /Y,Λ) gives rise to a canonical
element (a relative fundamental class)

[X/Y ] ∈ RΓ(X/Y,Λ)(−d)[−2d]. (5)

Our Gysin morphism is then the corresponding morphism

gysf ∶ Λ(d)[2d]→ f !Λ (6)

in D(Xét,Λ), and the trace morphism trf ∶ f!Λ(d)[2d]→ Λ is its transpose.

It will also be useful to note that these can be refined to natural transforma-
tions

gysf ∶ f∗(d)[2d]→ f ! (7)

trf ∶ f!f
∗(d)[2d]→ id. (8)

For example, trf is the composite

f!f
∗(−)(d)[2d] ≃ (−)⊗ f!Λ(d)[2d]

id⊗trfÐÐÐ→ (−)⊗Λ = id

where the isomorphism is the projection formula. Note that when (6) is
invertible, (7) will also be invertible on dualizable objects in D(Yét,Λ) (but
not necessarily on arbitrary ones).

4. Proofs of the asserted properties

We begin by noting that, in case f is a closed immersion, our construction of
the Gysin morphism obviously coincides with that of [DJK, §3.2], which itself
agrees with Gabber’s construction [ILO, Exp. XVI, §2.3] by [DJK, 4.4.3].
The base change and functoriality properties are proven exactly as in the case
of closed immersions, using respectively Tor-independent base change of the
deformation space DX/Y (see [Kh, Thm. 1.3(ii)]) and the double deformation
space associated to lci morphisms X → Y → Z,

DX/Y /Z ∶=DDX/Z ×Z Y /DX/Z ,

the deformation to the normal stack of the morphism DX/Z ×Z Y → DX/Z .
See the proof of [DJK, Thm. 3.2.21].

Let us show that if f is smooth of relative dimension d, then gysf is the

Poincaré duality isomorphism f !(Λ) ≃ Λ(d)[2d]. Form the cartesian square

X ×Y X X

X Y

pr2

pr1 f

f
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The diagonal morphism ∆ ∶X →X ×Y X is lci of relative virtual dimension
−d and the natural transformation tr∆ ∶ ∆!∆

∗(−d)[−2d]→ id (8) gives rise
to

ηf ∶ id = pr2,!∆!∆
∗pr∗1

tr∆ÐÐ→ pr2,!pr∗1(d)[2d] ≃ f∗f!(d)[2d].
We claim that ηf and trf form the unit and counit of an adjunction
(f!, f

∗(d)[2d]). Indeed, it is easy to check that both composites

f! f!f
∗f!(d)[2d] f!

f∗(d)[2d] f∗f!f
∗(2d)[4d] f∗(d)[2d]

f!(ηf ) trf∗f!

ηf∗f∗(d)[2d] f∗∗trf (d)[2d]

are identity by using the functoriality of the trace for the composite pr1 ○∆
(resp. for the composite pr2 ○∆) and by base change for the trace of f . This
argument shows not only that gysf is an isomorphism but also that it agrees
with the Poincaré duality isomorphisms of [SGA4, Exp. XVIII, Thm. 3.2.5]
and [LZ, Thm. 0.1.4], or equivalently that trf agrees with the trace of [SGA4,
Exp. XVIII, Thm. 2.9] or [LZ, Thm. 0.1.4]: indeed, both are counits for the
same adjunction.

It remains to show that if X and Y are regular (in which case f ∶X → Y is
automatically lci), then gysf gives the isomorphism f !Λ ≃ Λ(d)[2d] asserted
in Theorem A(iii). But invertibility of gysf can be checked after inverse
image along a Zariski cover, and by functoriality we have for any open
immersion j ∶ U ↪X a commutative diagram

Λ(d)[2d] j!Λ(d)[2d] j!f !Λ

Λ(d)[2d] (f ○ j)!Λ.

gysj j!(gysf )

gysf○j

where gysj is invertible. Thus we may localize on X and choose a global
factorization through a closed immersion i ∶X ↪X ′ and a smooth morphism
p ∶ X ′ → Y . By functoriality of Gysin morphisms again and the fact that
gysp is an isomorphism by above, we reduce to the case of a closed immersion
between regular schemes (note that X ′ is still regular). Finally, since gysf
agrees with Gabber’s construction in this case, the claim now follows from
absolute purity [ILO, Exp. XVI, Thm. 3.1.1].

5. Remarks

Using the formalism of [LZ], our construction of the traces trf immediately
extends to the case where the schemes X and Y are algebraic stacks. Absolute
Poincaré duality also extends to regular algebraic stacks with the same proof.

We can also allow X and Y to be derived (schemes or stacks), and f ∶X → Y
to be any quasi-smooth morphism. Indeed, an lci morphism is precisely
a quasi-smooth morphism whose source and target happen to be classical
(underived). The construction of Theorem A goes through mutatis mutandis,
since the deformation space DX/Y exists in that setting (see [Kh, §1.4]): it
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is simply the Weil restriction of X along 0 ∶ Y ↪ Y × A1 (in the derived
sense). For a quasi-smooth morphism, the trace is a kind of categorification
of Kontsevich’s virtual fundamental class (cf. (5)) and gives rise for example
to the Gromov–Witten theory of smooth projective varieties in arbitrary
characteristic. On the other hand, absolute Poincaré duality does not hold
for derived schemes whose classical truncations are not regular.

Finally, the construction can be refined from étale cohomology to motivic
cohomology. For this one can use the limit-extended motivic cohomology of
algebraic stacks defined in [KRa, §12] as a substitute for [LZ]. Note that the
trace formalism for flat maps (as developed in [SGA4, Exp. XVIII, Thm. 2.9])
has recently been extended to motivic cohomology by Abe (see [Abe]). Note
that in this setting our proof of absolute Poincaré duality goes through only
in equicharacteristic, since absolute purity in motivic cohomology is open in
general (see [DFJK, Thm. C.1] for the equicharacteristic case).

In the setting of rational and étale motivic cohomology, the results of this
paper appeared in a somewhat different form in the preprint [Kh]. The
present paper is an attempt to give a short and self-contained account
without using the language of motives or derived algebraic geometry.

In a future paper, I will explain how to use deformation to the normal stack
to generalize Verdier’s specialization functor [Ve]. This will be combined
with a derived version of Laumon’s homogeneous Fourier transform [La2] to
give an analogue of microlocalization in the sense of Kashiwara–Schapira
[KS] for singular schemes.
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