Lecture 9
Pro-cdh excision in K-theory

Let Z — X be a closed immersion of classical schemes. If X = Spec(R) is affine, we can
choose generators f1,..., f. for the ideal of definition and form the derived regular immersion

Z = Spec(R)/(f1,..., fr)) — X.

We can then form the derived blow-up Bl; /X X, and, as we have seen in the last few lectures,
there is a cartesian square of K-theory spectra

K(X) —— K(Z)

| |

K(Bly/x) — K(Pz(Nzx))-

The goal of this lecture is to explain how we can derive from this a statement involving only
classical schemes and their classical blow-ups.

1. The pro cdh excision theorem.
Definition 1.1. An abstract blow-up square is a cartesian square of classical schemes
E—Y
.
Z X
where i : Z— X is a closed immersion, and p: Y — X is a proper morphism that induces an
isomorphismp: Y —E 5 X - Z.

Theorem 1.2. Suppose we have an abstract blow-up square

E——Y

|

7 —— X

of noetherian classical schemes. Let Z(", resp. E™, denote the (n — 1)-st infinitesimal
neighbourhood of Z in X, resp. of E in'Y, for n > 0. Then the induced square of pro-spectra

{K(X)} —— {K(Z")}nx0

| |

{K(Y)} —— {K(E™)}uso
1S quasi-cartesian, i.e. the morphism
{K(X)} = {K(Z"™) xg o) K(Y)}n

i$ a quasi-isomorphism of pro-spectra.

1.3. Let us only mention in passing that Weibel’s conjecture, which asserts that for a noetherian
scheme K(X) of dimension d, the spectrum K(X) is (—d)-connective, is an immediate consequence
of pro-cdh excision together with the following theorem of Kerz—Strunk:

Theorem 1.4. Let X be a reduced affine noetherian scheme. Then for any negative K-theory
class x € K_;(X) (i > 0), there exists a cdh cover f : Y — X such that the inverse image
f*(x) € K_;(Y) vanishes.
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1.5. Tt will be convenient to adopt the following notation: for a morphism Y — X, write K(X,Y)
for the relative K-theory spectrum, the homotopy fibre

K(X,Y) = Fib(K(X) — K(Y)).
For a morphism of simplicial commutative rings A — B we write K(A, B) := K(Spec(A), Spec(B)).
It is easy to see that the statement of the theorem can then be reformulated as the assertion
that the canonical map
{KX, M) }aso = {K(Y,E™)}so
is a quasi-isomorphism.

Remark 1.6. Warning: for a closed immersion i, there is generally no identification K(X,Z) =
K(Perf(X,Z)), where Perf(X,Z) = Ker(Perf(X) — Perf(Z)).

2. Stategy of proof.

2.1. Here we will restrict our attention to the case of actual blow-up squares, i.e. Y = B :=

BICZl /x- In general one can reduce to this case by a certain argument involving Raynaud—Gruson’s
technique of “platification par éclatement”.

Using Zariski descent in K-theory (Lect. 4) we can immediately reduce to the case where
X = Spec(R) is affine (with R noetherian). Let f1,..., f.. be (an arbitrary choice of) generators of
the ideal defining Z; these determine a derived thickening Z = Spec(R//(f;);). Let Bl = Bl x
denote the derived blow-up and let D < B¢ denote the virtual exceptional divisor. Recall from
Lect. 7 that in this case the derived scheme B9°" is the derived base change Blioy/ar xar X

similarly D is the derived base change of the exceptional divisor in Blygy/ar-

For each n > 0 set Z(™) = Spec(R/(f);), let (Bder)(™) = Bl /x, and D™ s (Bder)(™) the
virtual exceptional divisor.

2.2. For each n > 0 we have morphisms of squares

E®) < Bel ng) c , (Bdcr)cl D™ « Bder
N T
Zm 5 X 7)) X 7z — 5 X

going from:

e the classical blow-up B, to
e the underlying classical scheme of the derived blow-up (B4°*), to
e the derived blow-up Bder.

We can express the composite arrow as a commutative diagram

{BLEM)}y —— {(B, D)},

| l

{(X7 Z(n))}n B {(X7 Z(n))}n'

In order to show that the left-hand arrow induces a quasi-isomorphism on K-theory pro-spectra,
it will suffice to show this for the other three arrows in this square.



2.3. For the lower horizontal arrow, this follows from the quasi-isomorphism
{K(Z™)}, = (K2},

demonstrated in Lect. 8.

2.4. For the right-hand arrow the claim is a variation on the derived blow-up formula: it is an
isomorphism in level n = 0, and it turns out also to be a quasi-isomorphism as n varies.

2.5. For time reasons we will focus on the upper horizontal arrow, relating the classical blow-up
to the derived blow-up, which is the most involved part of the proof.

Recall that the derived blow-up square

D(n) . Bder

Zm 4 X
is never cartesian. The canonical morphism

5 . D)y gder 7). — W)
X
is nevertheless a nil-immersion, i.e. it induces a levelwise isomorphism
5 (DG} = (WG}

Thus the upper horizontal arrow factors through morphisms
{BEM) L 5 {(B*)et, D) = {(B)ar, W)} 2 (B, W) 22 (B, D)},

We will show that each of these induces an isomorphism on K-theory pro-spectra.

3. Pro Milnor excision. Before proceeding to the proof we now state a couple pro versions
of Milnor excision, which are the main tools we will use. We will come back to their proofs next
lecture.

Theorem 3.1. Let A — B be a homomorphism of (discrete) noetherian commutative rings,
and I C A an ideal which maps isomorphically onto an ideal J C B. Then the morphism of
pro-spectra

{K(A,A/T") }ns0 = {K(B, B/J") }nso
18 a quasi-isomorphism.
Theorem 3.2. Let R be a noetherian simplicial commutative ring and (f1,..., fr) a sequence

of elements. Suppose that the pro-abelian group {(f");(mkR)}n vanishes for each k > 0. Then
the morphism of pro-spectra

{KR,R/(f")i}n>0 = {K(moR, moR/(f]")i}n>0
i a quasi-isomorphism.

Remark 3.3. The condition in Theorem 3.2 holds if we assume that the open complement of
the closed derived subscheme Spec(R//(fi):) < Spec(R) is a classical scheme. Indeed the latter
condition amounts to saying that the localizations R f;l] are all discrete, or equivalently that
f"(mxR) = 0 for some m and each 3.
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4. Step 1. We begin by considering the morphism oy : (B, E() — ((Bd*r), Dgl)) which is
induced by the canonical inclusion

Bcl N (Bder)Cl
of the classical blow-up into the classical scheme underlying the derived blow-up.

Claim 4.1. The map of pro-spectra
(4.1) {K((B*)a, DG} = (KB EM)},

18 a quast-isomorphism.

4.2. To prove this we will use the following consequence of pro-Milnor excision:
Proposition 4.3 (Pro closed gluing). Let

E——Y

|

7 — X

be an abstract blow-up square of noetherian classical schemes. Suppose that Y — X is a closed
immersion. Then K-theory satisfies pro excision for this square.

Proof. Again we can assume X = Spec(A) is affine by Zariski descent. Let Z = Spec(A/I) and
Y = Spec(A/J). The condition that Y — X is an isomorphism away from Z implies that the
homomorphism A — A/J induces an isomorphism Ay — (A/J); = A;/J; for each element
f € 1. This means that there exists some s > 0 such that f°-J = 0 for some s > 0, for each
f €1; in particular we find I* - J = 0 for sufficiently large s. By the Artin—Rees lemma there
exists an integer ¢t > 0 such that I'ttnJ = Ii(It NJ) for all 4 > 0. Thus taking ¢ > s, we conclude
that ¥ N J = 0 for some k >> 0. In other words, the homomorphism A — A/J sends the ideal I*
isomorphically onto an ideal of A/J. Therefore, by pro Milnor excision (Theorem 3.1), we have
a quasi-isomorphism
(KX, Z0)}, & (K(Y,EED)},,

whence the claim. 0

4.4. To apply this in our situation, we first note:

Claim 4.5. The morphism of classical X-schemes B — (B is a closed immersion which
18 an tsomorphism over the complement X — Z.

Proof. The second part of the claim is obvious from the construction.

Over the closed subscheme Z, the fibre of B! is the (classical) exceptional divisor E, which is
isomorphic to the projectivized normal cone

E= PTOJZ(GZ/X),

where Cz/x is the (discrete) graded quasi-coherent Oz-algebra P, gk /Jk+1. The fibre of
(Bder) over Z is isomorphic to the “projectivized virtual normal bundle”

(PZ(NZ/X))CI = PZ(iSNZ/X)
where 7g : Z <> 7 is the inclusion. Thus the claim follows from the next lemma. [l

Lemma 4.6. Let X be a classical scheme, i : Z—Xa reqular closed immersion, and ig : 7 — Z
the inclusion of the underlying classical scheme. Then the canonical morphism of quasi-coherent
Oz-algebras

Symoz(iéNZ/x) — Cz/x
18 surjective.



t

Proof. The morphism in question factors through the canonical surjection
Symoz(j/jz) - Cz/x,
so it suffices to show that the morphism of quasi-coherent Oz-modules
s 2
is surjective. The claim is local and is not difficult to check using the “connectivity lemma” for

the cotangent complex (Lect. 6, Lem. 4.13). O

4.7. In view of the above we get an abstract blow-up square

E < B9
Dcl — (Bder)cl.

By pro closed gluing (Proposition 4.3) we conclude the proof of Claim 4.1.

5. Step 2. We next consider the canonical morphism
az : (BY)a, W) = (B, W),
Claim 5.1. The induced map of pro-spectra
(2)" : {K(B*, W)}, — {K((B*)er, W)}
18 a quasi-isomorphism.

Proof. This follows from Zariski descent and pro Milnor excision (Theorem 3.2), since the open
complement B4e" — W is isomorphic to the classical scheme X — Z. O

6. Step 3. Finally we consider the morphism
g : (B, DMy — (Bder W)y,
Claim 6.1. The map of pro-spectra (a3)* : {K(W")},, — {K(D™)},, is a quasi-isomorphism.
In particular, the map
(6.1) {KB, W)}, — (KB, D)},

s a quasi-isomorphism.

Proof. We claim that the morphism {D(},, — {W(} s locally a quasi-isomorphism of pro-
simplicial rings. The desired conclusion will follow from this in view of the fact that K-theory
prserves quasi-isomorphisms of pro-simplicial rings, and satisfies Zariski descent.

To prove this, recall that in our situation the closed immersion Z — X is a derived base
change

Z—— X
b
{0} —— A".
Therefore the derived blow-up Bl /X is a derived base change of Bligy/a- along f: X — A"

(the morphism determined by the sections f1,..., f.). In particular the standard affine charts
U; of Blygy/a- induce affine charts V; of BIZ/X, and it will suffice to show that

(D™ AV}, = (WP v,



corresponds to a quasi-isomorphism of pro-simplicial rings (more precisely, for any intersection

of V’s). Furthermore, by base change we can also replace Z < X by {0} < A", i.e. we need to
consider

{EM 0 = {Us x {0}")}

for each i. Here U; = Spec(A;), A; = Z[z1 /x4, ..., 20 /x4, x;], form the standard affine cover of
Blioy/an, and E; = Spec(A;/z;) form the standard affine cover of the exceptional divisor. Thus
we are looking at the morphism of pro-simplicial rings

{A (T2 e = {AY (@) In

which is a O-truncation since the ideals (z7,...,z}") = (z}) are equal in the ring A;. Hence the
claim follows from Prop. 5.1 from Lect. 8. U
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