
Lecture 6
Proper morphisms in derived algebraic geometry

In the first half of this course, we looked at certain forms of flat descent properties satisfied
by perfect complexes and algebraic K-theory. In the second half, we will be concerned with
proper descent formulas. We will begin our study by reviewing in the present lecture the theory
of proper morphisms and closed immersions in derived algebraic geometry. Of special interest is
the class of derived regular immersions, which is the setting in which one can naturally define
derived blow-ups (as we will explain next lecture).

1. Proper morphisms.

1.1. Let p : Y → X be a morphism of derived schemes.

Definition 1.2. We say that p is proper if the following conditions hold:

(i) The morphism p is of finite type, i.e. pcl : Ycl → Xcl is of finite type.

(ii) The morphism p is separated, i.e. pcl : Ycl → Xcl is separated.

(iii) The morphism p satisfies the right lifting property with respect to morphisms of the form
Spec(K) → Spec(R), where R ∈ CRing is a valuation ring with fraction field K. That is, for
any solid commutative square

Spec(K) Y

Spec(R) X,

f

there exists a dashed arrow making the resulting diagram commute.

Remark 1.3. Separatedness implies that the dotted lift will automatically be unique.

Note that condition (iii) only depends on pcl : Ycl → Xcl. It follows that:

Proposition 1.4. A morphism p : Y → X is proper iff the morphism pcl : Ycl → Xcl is a proper
morphism of classical schemes.

1.5. From the perspective of quasi-coherent sheaves, the main property of proper morphisms is
as follows:

Theorem 1.6 (Grothendieck, Lurie). Let p : Y → X be a proper morphism of derived schemes.
Then the direct image functor p∗ : Qcoh(Y)→ Qcoh(X) preserves almost perfect (resp. coherent)
sheaves.

1.7. The two main sources of examples of proper morphisms are projective bundles PX(E)→ X,
and closed immersions Z ↪→ X. In fact, according to Chow’s lemma (of which there is a derived
version), these two classes of maps essentially determine all proper morphisms (up to birational
morphisms).

2. Vector bundles and projective bundles. Before introducing projective bundles, we take
a moment to introduce their affine counterparts (vector bundles).
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2.1. Let X be a derived scheme. We can define the ∞-category of quasi-coherent algebras over
X by the limit

QcohAlg(X) = lim←−
Spec(R)→X

SCRingR,

indexed over pairs (R,Spec(R)→ X) with R ∈ SCRing. In particular we have QcohAlg(Spec(R)) =
SCRingR in the affine case.

Construction 2.2. Let X be a derived scheme and A ∈ QcohAlg(X) a quasi-coherent OX-
algebra. We define a derived scheme SpecX(A) over X as follows. For formal reasons there is
an equivalence between (pre)sheaves of spaces on DSch/X, and derived (pre)stacks over X. Let
SpecX(A) denote the derived stack corresponding to the sheaf of spaces on DSch/X given by

(S
f−→ X) 7→ MapsQcohAlg(S)(f

∗A,OS).

Proposition 2.3. The derived stack SpecX(A) is schematic. Further, the morphism of derived

schemes SpecX(A)→ X is affine (which means that SpecX(A)×X S is affine for any S ∈ DSchaff).

Proof. Since the construction is stable under base change, we can choose an affine Zariski cover
of X and thereby reduce to the affine case. If X = Spec(R) and A = Γ(X,A), then we have
SpecX(A) = Spec(A). Note that this also shows that SpecX(A)→ X is affine. �

Construction 2.4. Let E be a locally free sheaf of finite rank n, i.e. a quasi-coherent sheaf
such that there exists a Zariski cover X =

⋃
i Ui with E|Ui free of rank n for each i (in the sense

that E|Ui ≈ O⊕nUi
). The vector bundle associated to E is the derived scheme over X

VX(E) := SpecX(SymOX
(E)).

It is easy to compute the cotangent complex:

Exercise 2.5. At any point x : Spec(R)→ VX(E), we have

x∗LVX(E)/X = x∗E.

In particular, it follows that VX(E)→ X is smooth.

Example 2.6. Taking E = O⊕nX to be free gives us n-dimensional affine space An
X := VX(O⊕nX ).

2.7. We now proceed to the projective version.

Construction 2.8. Let X be a derived scheme and E ∈ Qcoh(X) a locally free sheaf of finite
rank n. We define a derived stack PX(E) over X corresponding to the following presheaf on

DSch/X. We send any S
f−→ X to the space of pairs (L, u), where L is a locally free sheaf of rank

1 on S, and u : f∗(E)→ L is a morphism in Qcoh(S) which is surjective on π0.

Proposition 2.9. The derived stack PX(E) is schematic, and the morphism of derived schemes
PX(E)→ X is smooth and proper. Further, at any point x : S = Spec(R)→ PX(E), classifying
a pair (L, u), the relative cotangent complex is given by

x∗LPX(E)/X = M⊗ L⊗−1,

where M denotes the fibre of u.

Proof. One can imitate the usual proof of representability [1, Thm. 9.7.4] to show that PX(E)
is a derived scheme. Smoothness follows from the computation of the cotangent complex, which
we omit (see [2, § 19.2.6]).

Properness can be deduced as follows. It suffices to show that PX(E)cl → Xcl is proper.
Smoothness implies flatness so we have PX(E)cl = PX(E)×X Xcl = PXcl

(i∗E) where i : Xcl ↪→ X.
Then the claim follows from the fact that the classical projective bundle PXcl

(i∗E) → Xcl is
proper. �
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3. Closed immersions. We now discuss the other main class of examples of proper morphisms.

3.1. Let i : Z ↪→ X be a morphism of derived schemes. We define:

Definition 3.2.

(i) If X and Z are affine, we say that i is a closed immersion if it corresponds to a homomorphism
of simplicial commutative rings A→ B which induces a surjection on π0.

(ii) In general, we say that i is a closed immersion if for any affine derived scheme S = Spec(R)
and any morphism S → X, the derived scheme Y×X S is affine, and the morphism of affine
derived schemes Y×X S→ S is a closed immersion.

3.3. We have:

Proposition 3.4. Let i : Z → X be a morphism of derived schemes. Then the following are
equivalent:

(i) The morphism i is a closed immersion.

(ii) The morphism icl is a closed immersion of classical schemes.

Proof. If X is affine, then this is true by definition. Recall that (ii) is equivalent to the condition
that for any classical affine scheme S and any morphism S→ X, the morphism (Z×X S)cl → Scl

is a closed immersion of classical affine schemes. The claim follows therefore from the affine
case, and the following observation. �

Proposition 3.5. Let X be a derived scheme. Then X is affine iff Xcl is affine.

In particular, Proposition 3.4 has the obvious corollary:

Corollary 3.6. Any closed immersion of derived schemes is proper.

Example 3.7. A special example of a closed immersion is the canonical morphism

Xcl ↪→ X.

More generally, we refer to any closed immersion Z ↪→ X which induces an isomorphism Zcl ≈ Xcl

as a nil-immersion.

4. Regular closed immersions. In classical algebraic geometry, we can view closed sub-
schemes as being “cut out” by functions (or by the ideal they generate). In derived geometry,
not all closed immersions are of this form (Example 3.7). In this section we look at a special
class of closed immersions which are “defined by equations”.

4.1. We begin with an important construction in derived commutative algebra:

Construction 4.2. Let R be a simplicial commutative ring. Let f1, . . . , fn be a sequence of
points of the underlying space RSpc. We define a new simplicial commutative ring R//(fi)i by
the cocartesian square in SCRing:

Z[T1, . . . ,Tn] Z[T1, . . . ,Tn]/(T1, . . . ,Tn)

R R//(fi)i.

Ti 7→fi

The homomorphism R→ R//(fi)i induces on π0 the surjection

π0(R)→ π0(R)/(fi)i,

the usual quotient by the ideal generated by the fi’s.
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Exercise 4.3. The underlying R-module of R//(fi)i can be computed as the “Koszul complex”⊗
i

R
fi−→ R.

Example 4.4. Suppose that R is discrete and that (fi)i form a regular sequence: f1 is a non-
zero-divisor, and each fi is a non-zero-divisor in the ring R/(f1, . . . , fi−1) for i > 1. In this case,
the Koszul complex defines a free resolution of R/(fi)i, and in particular we find that R//(fi)i is
discrete (and in fact R//(fi)i ≈ R/(fi)i).

4.5. We now define:

Definition 4.6. Let i : Z ↪→ X be a closed immersion of derived schemes. The closed immersion
i is regular (or a local complete intersection) if the shifted cotangent complex L∗Z/X[−1] is a

locally free OZ-module of finite rank.

Let i : Z ↪→ X be a regular closed immersion. We define the conormal sheaf N∗Z/X as the

shifted cotangent complex

N∗Z/X := L∗Z/X[−1],

which is by assumption a locally free OZ-module of finite rank. The associated vector bundle,
which we denote N∗Z/X, is called the conormal bundle of i.

Definition 4.7. The virtual codimension of i, defined Zariski-locally on Z, is the rank of the
locally free OZ-module N∗Z/X.

Remark 4.8. If X and Z are smooth over some base S, then any closed immersion i : Z ↪→ X is
regular. This follows from the exact triangle

i∗L∗X/S → L∗Z/S → L∗Z/X.

4.9. We have the following geometric characterization of regular immersions.

Proposition 4.10. Let i : Z ↪→ X a closed immersion of derived schemes. Then i is regular if
and only if, Zariski-locally on X, there exists a morphism f : X→ An and a cartesian square

Z X

{0} An,

f

where {0} ↪→ An denotes the inclusion of the origin into n-dimensional affine space over
Spec(Z).

In other words, the statement is that regular immersions are locally defined by Construc-
tion 4.2.

Remark 4.11. Let i : Z ↪→ X be a closed immersion between classical schemes. If it is regular
in the usual sense (i.e. locally cut out by a regular sequence), then we have LZ/X = I/I2[1],

where I ⊂ OX is the ideal of definition, with I/I2 locally free; in particular it follows that i is
regular the sense of Definition 4.6. One can also show the converse direction: the question being
Zariski-local, one can reduce to the case where X is the spectrum of a (discrete) local ring R and
Z = Spec(R//(fi)i), in which case the discreteness of the R//(fi)i (or its underlying R-module,
the Koszul complex), implies that the sequence (fi)i is regular.

Further, it is easy to prove a classical variant of Proposition 4.10 where the morphism f is
required to be flat.
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4.12. For the proof of Proposition 4.10, we will need the following very useful lemma about the
cotangent complex:

Lemma 4.13. Let f : Y → X be a morphism of affine derived schemes. Let K be the cofibre of
the morphism f ] : OX → f∗(OY) in the category of quasi-coherent OX-modules. Then there is a
canonical morphism of quasi-coherent OY-modules

ϕ : f∗(K)→ L∗Y/X.

Further, if f ] is n-connected for some n > 2, then ϕ is (n+ 2)-connected.

Recall that a morphism of spectra is n-connected if its cofibre is n-connected, or equivalently
if its fibre is (n− 1)-connected.

We will also need the following fact, which can also be proved using Lemma 4.13:

Proposition 4.14. Let f : Y → X be a morphism of derived schemes. Then f is an isomorphism
iff the following hold:

(i) The morphism fcl : Ycl → Xcl is an isomorphism.

(ii) The morphism f is formally étale, i.e. LY/X = 0.

Proof of Proposition 4.10. We can assume that X and Z are affine. Also, note that it suffices to
show the claim Zariski-locally on X (since it is obviously true on the complement X− Z).

Since the morphism i] : OX → i∗(OZ) is 0-connected (as i is a closed immersion), we obtain
by Lemma 4.13 a canonical 1-connected morphism

ϕ : i∗(I)→ N∗Z/X

where I is the fibre of i] (which is (−1)-connected, i.e. connective). In particular it induces
isomorphisms π0(i∗I) ' π0(N∗Z/X). Locally on Z we can assume NZ/X is free and choose a basis

f1, . . . , fn; these give rise to global sections of i∗i
∗(I). Since the map I→ i∗i

∗(I) is surjective
(follows from the fact that i] is), we can lift these to sections of I, or equivalent to sections of
OX which vanish on Z. These determine a morphism f : X→ An and a commutative diagram

Z X

{0} An.

f

z

It remains to show that the morphism

δ : Z→ X ×
An

S

S

is invertible. By Proposition 4.14 it suffices to show that it induces an isomorphism of underlying
classical schemes, and is formally étale. The first assertion follows from the fact that the ideal
defining the classical closed immersion Zcl ↪→ Xcl is the image of π0(I) → π0(OX), and the
elements fi generate π0(I) (by inspection of their construction). For the second assertion, one
uses the exact triangle

δ∗L∗X×An
S

S/X → L∗Z/X → L∗Z/X×An
S

S

which is identified with

O⊕nZ [1]→ N∗Z/X[1]→ L∗Z/X×An
S

S,

and one shows that the first arrow is an isomorphism. �
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