Lecture 7
Dévissage, localization and supports

7.1. Dévissage.

Construction 1. Let A be an abelian category. Then Ky(A) is the free abelian
group on isomorphism classes of objects of A, modulo the relations

[A] = [A]+ [AT]
for every short exact sequence 0 - A’ - A — A” — 0 in A.
Example 2. Let A be a noetherian ring. Then Ko(Mod®) = Go(A) by definition.

Definition 3. Let A be a ring and I C A an ideal. An A-module M is called
[°°-torsion if it is I*-torsion for some k > 0, i.e., I'M = 0. If I is generated by
a single element f € A, we also use the term f*°-torsion. Let Modff(l"o) (resp.

Mod'®(f>°)) denote the full subcategory of Mod spanned by I™-torsion modules
(resp. f°°-torsion modules).

Remark 4. Let A be a noetherian ring, I C A an ideal, and ¢ : A — A/I the
quotient homomorphism. Then the restriction of scalars functor

(—)ga) : Mod¥; — Mod

lands in the full subcategory Modig(loo). Indeed, we have IMy; = 0 for every
A /T-module M.

Theorem 5 (Dévissage). Let A be a noetherian ring, 1 C A an ideal, and
¢ A — A/I the quotient homomorphism. Then the restriction of scalars functor
mduces a canonical isomorphism

6. : Go(A/1) = Go(ModiF(17)).

Example 6. If I is a nil ideal, then every A-module M is [*°-torsion, so Mod%(l“) =
Modf. In that case, we recover the nil-invariance property proven in §6.4:

Go(A/T) = Go(A).

Proof. Note that if M is I*-torsion, then it admits a filtration
O=I'"McI*¥'Mc---cIMcM

whose successive quotients are I-torsion, hence are A/I-modules. Thus we may
define an inverse map

M] = ) [IM/TIM.
>0
The rest of the proof is the same as that of nil-invariance (§6.4). O
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7.2. Digression: quotients of abelian categories.

Definition 7. Let A be an abelian category and B a non-empty full subcategory.
We say that B is a Serre subcategory if, for any short exact sequence

0—+A"—-A—-A" =0,

we have A € B iff A’ € B and A” € B. In other words, B should be closed under
subobjects, quotients, and extensions.

Remark 8. Note that if B C A is a Serre subcategory, then it contains the zero
object 0 € A. Also, B is abelian and the inclusion B — A is an exact functor.

Theorem 9. Let B C A be a Serre subcategory. Then there exists a universal
exact functor

v:A—>A/B
with kernel B. Universality means that for any exact functor F : A — € with
F(b) =0 for all b € B, there exists a unique exact functor F : A/B — € making
the triangle below commute.

ALY e

A/B

Construction 10. The quotient A — A/B can be described as the localization
(in the sense of Gabriel-Zisman) at the class of morphisms f : A — A’ in A with
Ker(f) € B and Coker(f) € B. We sketch a concrete construction.

The objects of A/B are the same as those of A; we write v(A) € A/B for
the object corresponding to an object A € A. Morphisms y(A) — ~(A’) are
equivalences classes of diagrams in A

N

where f has kernel and cokernel in B. Two such diagrams (A <— C — A’) and
(A < C' — A’) are equivalent if there exists a morphism h : C’ — C making the
diagram below commute.

C

TN

h B

N

C/

The composition law is defined as follows. Given two morphisms y(A) — v(A')
and y(A’) — v(A”), represented by diagrams (A <— C — A’) and (A’ < C' — A”),



respectively, the composite y(A) — v(A”) is represented by
C XA’ C

c/// \\\O
A///\\\\A“/// \\\N’

where the square in the middle is cartesian. The functor v : A — A/B acts on
morphisms by sending f: A — A’ to the equivalence class of the diagram

A

VN

A A

7.3. Localization. Let B C A be a Serre subcategory. Let ¢ : B < A be the
inclusion and v : A — A/B the quotient functor. Both functors are exact and
induce canonical homomorphisms

e : Ko(B) = Ko(A)
and
Vet Ko(A) = Ko(A/B).
Theorem 11. The sequence
Ko(B) 2 Ko(A) 25 Ko(A/B) — 0
18 exact.

Proof. Surjectivity of v, is clear since v is the identity on objects. Note that
Y«tx = 0 since v o v = 0 by construction. Therefore there is a canonical morphism

K()(.A)/Ko(B) = COkGI‘(L*) — Ko(.A/B)
We claim that an inverse is given by the assignment
7[A] = [A],
where A € A.

To show this is well-defined, we have to show that if y(A) ~ ~(A’) is an
isomorphism in A/B, then [A] = [A’] in K¢(A)/Ko(B). Such an isomorphism can
be represented by a diagram

Adcsw
where f and g both have kernel and cokernel contained in B. From the short
exact sequences

0 — Ker(f) — C — Im(f) — 0,
0 — Im(f) — A — Coker(f) — 0,
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we see that
[C] = [A] + [Ker(f)] — [Coker(f)] = [A"] + [Ker(g)] — [Coker(g)].
In particular, we deduce [A] — [A'] =0 in Ko(A)/ Ko(B).
It remains to show that if

0= Y(A") 5 3(A) 2 4(A”) = 0

is a short exact sequence in A/B, then
[A] = [AT + [A7]

holds in Ko(A)/ Ko(B). Choose a diagram

C
7N
A A//

representing the morphism b. As above, we have [C] = [A] + [Ker(f)] — [Coker(f)]
in Kog(A) and hence [C] = [A] in K¢(A)/Ko(B) (since Ker(f), Coker(f) € B).
Now consider the morphism g. Since 7 is exact, there is an exact sequence

0 = v(Ker(g)) = 7(C) 12 y(A") = ~(Coker(g)) — 0.

Consider the commutative diagram

y 7(C) \()
V(A)

b (A7)

Since y(f) is an isomorphism and b is surjective, we deduce that v(g) is surjective.
In particular, y(Coker(g)) = 0 and y(Ker(g)) ~ v(A’) in A/B. Thus by above it
follows that [Ker(g)] = [A’] in Ko(A)/Ko(B). Finally we have

[A] = [C] = [A"] + [Ker(g)] — [Coker(g)] = [A"] + [A']

in Ko(A)/ Ko(B), as desired. This concludes the construction of the inverse map
Ko(A/B) — Ko(A)/ Ko(B), and hence the proof. O

Theorem 12. Let A be a noetherian ring and f € A an element. Then the ex-
tension of scalars functor Modff — Mod%[f,l] induces an equivalence of categories

Modi§ /(Modi§(£>)) — Mod, .
Proof. Exercise. O

Corollary 13 (Localization theorem). Let A be a noetherian ring and f € A an
element. Let ¢ : A — A[f~] and v : A — A/(f). Then there is an exact sequence

Co(A/(f)) 25 Co(A) L5 Go(A[f]) = 0



Proof. From the two previous theorems, we have the exact sequence
Ko(Mod®(£>)) — Go(A) <5 Go(A[f1]) — 0.
The claim follows by combining this with the dévissage theorem (§7.1). O

Corollary 14. Let A be a reqular ring and f € A an element. Let ¢ : A — A[f™!].
Then there is an exact sequence

Go(A/(f)) = Ko(&) & Ko(A[f]) = 0,
where the first map is Go(A/{f)) — Go(A) ~ Kqy(A).

Proof. Recall that A[f~1] is also regular (§2.3). Thus the claim follows by com-
bining the previous Corollary with the comparison of K-theory and G-theory
for regular rings (§5.3), and observing that ¢* : Ky(A) — Ko(A[f!]) and
¢* : Go(A) = Go(A[f™!]) are compatible with this comparison. O

7.4. Spectrum of a ring.

Definition 15. Let A be a commutative ring. The underlying set of the Zariski
spectrum of A, denoted

[Spec(A)],
is the set of equivalence classes of morphisms A — k, where k is a field. Two
morphisms A — k1 and A — Ky are equivalent if there exists a field k3 and a
commutative square

A —— Ky

]

K1 — K3.

Example 16 (Fields). Let k be a field. Then |[Spec(k)| is the set of equivalence
classes [k — k|, where k is a field. But every k — & is equivalent to the identity
k — k, so !Spec(k‘)‘ ~ {x}.

Example 17 (The dual numbers). Let k be a field and A = k[e]/(¢?). The data of
a field £ and a ring homomorphism A — k is the same as that of a field extension
k/k and an element x € k satisfying 22 = 0. But then z = 0 necessarily. Thus
every equivalence class [A — ] is equal to [A — k], and we get [Spec(A)| ~ {x}.

Example 18 (The integers). Since Z is the initial commutative ring, specifying
the data of a field x and a ring homomorphism Z — « is the same as specifying
the field k. Moreover, Z — « factors through either Q or F,, where p is a prime,
depending on the characteristic of k. Therefore we find

|Spec(Z)| = {[Z — Q]} U{[Z — F,] | p prime}.

Example 19 (Polynomial rings). Let k£ be a field and A = k[T] the polynomial
ring. The data of a field x and a ring homomorphism k[T] — & is the same as that
of a field extension x/k and an element o € k. Moreover, the morphism k[T] — &
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will factor through the subfield k(«) C & generated by «, so [A — k| = [A — k(a)].
Therefore we have

|Spec(k[T])| = {[k[T] — k(a)] | x/k a field extension, o € k}.

We can say more. Either k[T] — k() is injective or not injective, depending
on whether « is transcendental or algebraic. In the first case, it factors through
the field of fractions and induces an isomorphism k(T) ~ k(a). In the second,
it induces an isomorphism k[T]/(f) ~ k(«), where f is an (irreducible) minimal
polynomial of a. Thus we can write

|Spec(k[T])| = {[k[T] = k(T)]} U {[k[T] — k[T]/(f)] | f irred. polynomial}.
If k is algebraically closed, then

[Spec(k[T])| = {[FT] = k(T)]} U {[k[T] =% k] | a € k}.
Definition 20. A point p of a commutative ring A is an equivalence class [A — k],
i.e., an element p € ‘Spec(A)‘.

Definition 21. The residue field of a point p is a field k(p), together with a ring
homomorphism A — «(p), such that every homomorphism A — k equivalent to p
factors through x(p).

Remark 22. Let A be a ring. Let ¢ : A — k be a ring homomorphism with
x a field. Since k is local, ¢ factors through a local homomorphism A, — &,
where p = Ker(¢). Since it kills the maximal ideal, it factors further through
k(p) = Ap/pAp. Thus we have [A — k] = [A — k(p)] in [Spec(A)|. This shows
that every point p = [A — k] has a (unique) residue field x(p) = k(p) where
p = Ker(A — &).

Remark 23. Using the above remark, one can show that |Spec(A)‘ is in bijection
with the set of prime ideals p C A.

Definition 24. A point p € ’Spec(A)‘ is closed if the homomorphism A — k(p)
is surjective.

Definition 25. If A is an integral domain, a generic point is a point n € ’Spec(A)|
such that A — k() is injective. From the universal property of the field of fractions
A — Frac(A), it follows that x(n) = Frac(A). In particular A admits a unique
generic point.

Example 26. Above we showed that the residue fields of the points of Z are Q
and F,. All points are closed except the generic point [Z — Q]. Similarly we saw
that the residue fields of the points of k[T] are k(T) and k (when k is algebraically
closed). All points are closed except the generic point [k[T] — k(T)].

Example 27. The definition of generic point could be made more generally, but
it is not very useful when A is not an integral domain. For example, note that for
A = k[e]/(g?) there is no injection ¢ : A — k where « is a field. Indeed ¢ factors
through A — k& — k and the first map is not injective. Thus A admits no generic
point (it has only a closed point [A — k).
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