
Lecture 7
Dévissage, localization and supports

7.1. Dévissage.

Construction 1. Let A be an abelian category. Then K0(A) is the free abelian
group on isomorphism classes of objects of A, modulo the relations

[A] = [A′] + [A′′]

for every short exact sequence 0→ A′ → A→ A′′ → 0 in A.

Example 2. Let A be a noetherian ring. Then K0(Modfg
A) = G0(A) by definition.

Definition 3. Let A be a ring and I ⊂ A an ideal. An A-module M is called
I∞-torsion if it is Ik-torsion for some k > 0, i.e., IkM = 0. If I is generated by
a single element f ∈ A, we also use the term f∞-torsion. Let Modfg

A(I∞) (resp.

Modfg
A(f∞)) denote the full subcategory of Modfg

A spanned by I∞-torsion modules
(resp. f∞-torsion modules).

Remark 4. Let A be a noetherian ring, I ⊂ A an ideal, and φ : A � A/I the
quotient homomorphism. Then the restriction of scalars functor

(−)[A] : Modfg
A/I → Modfg

A

lands in the full subcategory Modfg
A(I∞). Indeed, we have IM[A] = 0 for every

A/I-module M.

Theorem 5 (Dévissage). Let A be a noetherian ring, I ⊂ A an ideal, and
φ : A� A/I the quotient homomorphism. Then the restriction of scalars functor
induces a canonical isomorphism

φ∗ : G0(A/I)
∼−→ G0(Modfg

A(I∞)).

Example 6. If I is a nil ideal, then every A-module M is I∞-torsion, so Modfg
A(I∞) =

Modfg
A . In that case, we recover the nil-invariance property proven in §6.4:

G0(A/I)
∼−→ G0(A).

Proof. Note that if M is Ik-torsion, then it admits a filtration

0 = IkM ⊂ Ik−1M ⊂ · · · ⊂ IM ⊂ M

whose successive quotients are I-torsion, hence are A/I-modules. Thus we may
define an inverse map

[M] 7→
∑
i>0

[IiM/Ii−1M].

The rest of the proof is the same as that of nil-invariance (§6.4). �
1



2

7.2. Digression: quotients of abelian categories.

Definition 7. Let A be an abelian category and B a non-empty full subcategory.
We say that B is a Serre subcategory if, for any short exact sequence

0→ A′ → A→ A′′ → 0,

we have A ∈ B iff A′ ∈ B and A′′ ∈ B. In other words, B should be closed under
subobjects, quotients, and extensions.

Remark 8. Note that if B ⊆ A is a Serre subcategory, then it contains the zero
object 0 ∈ A. Also, B is abelian and the inclusion B ↪→ A is an exact functor.

Theorem 9. Let B ⊆ A be a Serre subcategory. Then there exists a universal
exact functor

γ : A→ A/B

with kernel B. Universality means that for any exact functor F : A → C with
F(b) = 0 for all b ∈ B, there exists a unique exact functor F : A/B→ C making
the triangle below commute.

A C

A/B

F

γ
F

Construction 10. The quotient A→ A/B can be described as the localization
(in the sense of Gabriel–Zisman) at the class of morphisms f : A→ A′ in A with
Ker(f) ∈ B and Coker(f) ∈ B. We sketch a concrete construction.

The objects of A/B are the same as those of A; we write γ(A) ∈ A/B for
the object corresponding to an object A ∈ A. Morphisms γ(A) → γ(A′) are
equivalences classes of diagrams in A

C

A A′

f g

where f has kernel and cokernel in B. Two such diagrams (A ← C → A′) and
(A← C′ → A′) are equivalent if there exists a morphism h : C′ → C making the
diagram below commute.

C

A B

C′

h

The composition law is defined as follows. Given two morphisms γ(A)→ γ(A′)
and γ(A′)→ γ(A′′), represented by diagrams (A← C→ A′) and (A′ ← C′ → A′′),
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respectively, the composite γ(A)→ γ(A′′) is represented by

C×A′ C
′

C C′

A A′ A′′

where the square in the middle is cartesian. The functor γ : A→ A/B acts on
morphisms by sending f : A→ A′ to the equivalence class of the diagram

A

A A′.

f

7.3. Localization. Let B ⊆ A be a Serre subcategory. Let ι : B ↪→ A be the
inclusion and γ : A → A/B the quotient functor. Both functors are exact and
induce canonical homomorphisms

ι∗ : K0(B)→ K0(A)

and
γ∗ : K0(A)→ K0(A/B).

Theorem 11. The sequence

K0(B)
ι∗−→ K0(A)

γ∗−→ K0(A/B)→ 0

is exact.

Proof. Surjectivity of γ∗ is clear since γ is the identity on objects. Note that
γ∗ι∗ = 0 since γ ◦ ι = 0 by construction. Therefore there is a canonical morphism

K0(A)/K0(B) := Coker(ι∗)→ K0(A/B).

We claim that an inverse is given by the assignment

γ∗[A] 7→ [A],

where A ∈ A.

To show this is well-defined, we have to show that if γ(A) ' γ(A′) is an
isomorphism in A/B, then [A] = [A′] in K0(A)/K0(B). Such an isomorphism can
be represented by a diagram

A
f←− C

g−→ A′

where f and g both have kernel and cokernel contained in B. From the short
exact sequences

0→ Ker(f) ↪→ C� Im(f)→ 0,

0→ Im(f) ↪→ A� Coker(f)→ 0,
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we see that

[C] = [A] + [Ker(f)]− [Coker(f)] = [A′] + [Ker(g)]− [Coker(g)].

In particular, we deduce [A]− [A′] = 0 in K0(A)/K0(B).

It remains to show that if

0→ γ(A′)
a−→ γ(A)

b−→ γ(A′′)→ 0

is a short exact sequence in A/B, then

[A] = [A′] + [A′′]

holds in K0(A)/K0(B). Choose a diagram

C

A A′′

f g

representing the morphism b. As above, we have [C] = [A] + [Ker(f)]− [Coker(f)]
in K0(A) and hence [C] = [A] in K0(A)/K0(B) (since Ker(f),Coker(f) ∈ B).
Now consider the morphism g. Since γ is exact, there is an exact sequence

0→ γ(Ker(g))→ γ(C)
γ(g)−−→ γ(A′′)→ γ(Coker(g))→ 0.

Consider the commutative diagram

γ(C)

γ(A) γ(A′′)

γ(f) γ(g)

b

Since γ(f) is an isomorphism and b is surjective, we deduce that γ(g) is surjective.
In particular, γ(Coker(g)) = 0 and γ(Ker(g)) ' γ(A′) in A/B. Thus by above it
follows that [Ker(g)] = [A′] in K0(A)/K0(B). Finally we have

[A] = [C] = [A′′] + [Ker(g)]− [Coker(g)] = [A′′] + [A′]

in K0(A)/K0(B), as desired. This concludes the construction of the inverse map
K0(A/B)→ K0(A)/K0(B), and hence the proof. �

Theorem 12. Let A be a noetherian ring and f ∈ A an element. Then the ex-
tension of scalars functor Modfg

A → Modfg
A[f−1] induces an equivalence of categories

Modfg
A/(Modfg

A(f∞))→ Modfg
A[f−1].

Proof. Exercise. �

Corollary 13 (Localization theorem). Let A be a noetherian ring and f ∈ A an
element. Let φ : A→ A[f−1] and ψ : A→ A/〈f〉. Then there is an exact sequence

G0(A/〈f〉)
ψ∗−→ G0(A)

φ∗−→ G0(A[f−1])→ 0
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Proof. From the two previous theorems, we have the exact sequence

K0(Modfg
A(f∞))→ G0(A)

φ∗−→ G0(A[f−1])→ 0.

The claim follows by combining this with the dévissage theorem (§7.1). �

Corollary 14. Let A be a regular ring and f ∈ A an element. Let φ : A→ A[f−1].
Then there is an exact sequence

G0(A/〈f〉)→ K0(A)
φ∗−→ K0(A[f−1])→ 0,

where the first map is G0(A/〈f〉)→ G0(A) ' K0(A).

Proof. Recall that A[f−1] is also regular (§2.3). Thus the claim follows by com-
bining the previous Corollary with the comparison of K-theory and G-theory
for regular rings (§5.3), and observing that φ∗ : K0(A) → K0(A[f−1]) and
φ∗ : G0(A)→ G0(A[f−1]) are compatible with this comparison. �

7.4. Spectrum of a ring.

Definition 15. Let A be a commutative ring. The underlying set of the Zariski
spectrum of A, denoted ∣∣Spec(A)

∣∣,
is the set of equivalence classes of morphisms A → κ, where κ is a field. Two
morphisms A → κ1 and A → κ2 are equivalent if there exists a field κ3 and a
commutative square

A κ2

κ1 κ3.

Example 16 (Fields). Let k be a field. Then
∣∣Spec(k)

∣∣ is the set of equivalence
classes [k → κ], where κ is a field. But every k → κ is equivalent to the identity
k → k, so

∣∣Spec(k)
∣∣ ' {∗}.

Example 17 (The dual numbers). Let k be a field and A = k[ε]/〈ε2〉. The data of
a field κ and a ring homomorphism A→ κ is the same as that of a field extension
κ/k and an element x ∈ κ satisfying x2 = 0. But then x = 0 necessarily. Thus
every equivalence class [A→ κ] is equal to [A→ k], and we get

∣∣Spec(A)
∣∣ ' {∗}.

Example 18 (The integers). Since Z is the initial commutative ring, specifying
the data of a field κ and a ring homomorphism Z→ κ is the same as specifying
the field κ. Moreover, Z→ κ factors through either Q or Fp, where p is a prime,
depending on the characteristic of κ. Therefore we find∣∣Spec(Z)

∣∣ =
{

[Z→ Q]
}
∪
{

[Z→ Fp] | p prime
}
.

Example 19 (Polynomial rings). Let k be a field and A = k[T] the polynomial
ring. The data of a field κ and a ring homomorphism k[T]→ κ is the same as that
of a field extension κ/k and an element α ∈ κ. Moreover, the morphism k[T]→ κ
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will factor through the subfield k(α) ⊆ κ generated by α, so [A→ κ] = [A→ k(α)].
Therefore we have∣∣Spec(k[T])

∣∣ =
{

[k[T]→ k(α)] | κ/k a field extension, α ∈ κ
}
.

We can say more. Either k[T] → k(α) is injective or not injective, depending
on whether α is transcendental or algebraic. In the first case, it factors through
the field of fractions and induces an isomorphism k(T) ' k(α). In the second,
it induces an isomorphism k[T]/〈f〉 ' k(α), where f is an (irreducible) minimal
polynomial of α. Thus we can write∣∣Spec(k[T])

∣∣ =
{

[k[T]→ k(T)]
}
∪
{

[k[T]→ k[T]/〈f〉] | f irred. polynomial
}
.

If k is algebraically closed, then∣∣Spec(k[T])
∣∣ =

{
[k[T]→ k(T)]

}
∪
{

[k[T]
T7→α−−−→ k] | α ∈ k

}
.

Definition 20. A point p of a commutative ring A is an equivalence class [A→ κ],
i.e., an element p ∈

∣∣Spec(A)
∣∣.

Definition 21. The residue field of a point p is a field κ(p), together with a ring
homomorphism A→ κ(p), such that every homomorphism A→ κ equivalent to p
factors through κ(p).

Remark 22. Let A be a ring. Let φ : A → κ be a ring homomorphism with
κ a field. Since κ is local, φ factors through a local homomorphism Ap → κ,
where p = Ker(φ). Since it kills the maximal ideal, it factors further through
κ(p) = Ap/pAp. Thus we have [A → κ] = [A → κ(p)] in

∣∣Spec(A)
∣∣. This shows

that every point p = [A → κ] has a (unique) residue field κ(p) = κ(p) where
p = Ker(A→ κ).

Remark 23. Using the above remark, one can show that
∣∣Spec(A)

∣∣ is in bijection
with the set of prime ideals p ⊂ A.

Definition 24. A point p ∈
∣∣Spec(A)

∣∣ is closed if the homomorphism A→ κ(p)
is surjective.

Definition 25. If A is an integral domain, a generic point is a point η ∈
∣∣Spec(A)

∣∣
such that A→ κ(η) is injective. From the universal property of the field of fractions
A → Frac(A), it follows that κ(η) = Frac(A). In particular A admits a unique
generic point.

Example 26. Above we showed that the residue fields of the points of Z are Q
and Fp. All points are closed except the generic point [Z→ Q]. Similarly we saw
that the residue fields of the points of k[T] are k(T) and k (when k is algebraically
closed). All points are closed except the generic point [k[T]→ k(T)].

Example 27. The definition of generic point could be made more generally, but
it is not very useful when A is not an integral domain. For example, note that for
A = k[ε]/〈ε2〉 there is no injection φ : A→ κ where κ is a field. Indeed φ factors
through A� k → κ and the first map is not injective. Thus A admits no generic
point (it has only a closed point [A� k]).
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