Exercise sheet 7

1. (i) Let F : A — A’ be an exact functor between abelian categories. Show that
Ker(F) C A, the full subcategory spanned by objects A such that F(A) ~ 0, is a
Serre subcategory.

(ii) Let F : A — A’ be an exact functor between abelian categories. Suppose
that F admits a right adjoint G such that the co-unit transformation FG — id
is invertible (equivalently, G is fully faithful). Show that there is a canonical
equivalence

A/ Ker(F) — A'.

(iii) Let A be an abelian category and B C A a Serre subcategory. Let Ag C A
be a full subabelian subcategory such that if A € Ay and B € B is a subobject or
quotient of A then also B € Ay. Show that the canonical functor

is fully faithful.
(i) Let 0 = X! - X — X” — 0 be a short exact sequence in A. Since F is exact,
0—-FX)—=>FX)—=FX") =0

is still exact. Thus F(X) ~ 0 iff F(X’) ~ 0 and F(X") ~ 0.
(ii) We show that the functor F : A — A’ satisfies the universal property of the
quotient v : A — A/ Ker(F).
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Thus, let o : A — B be a functor such that a(Ker(F)) =0, i.e., Ker(F) C Ker(a).
We first note that if 8 exists (making the diagram commute), then we have a
canonical isomorphism

b~ BFG ~ aG,

where the first isomorphism is induced by the co-unit id ~ FG. Thus S is unique
up to isomorphism if it exists. For existence, it will suffice to show that the only
possible candidate 8 := aG does satisfy SF ~ «. For an object X € A, consider

the unit morphism 7x : X — GF(X) and let K be its kernel. The triangle identities
for the adjunction (F, G) imply that the composite

F(X) 2% pap(x) 29 F(X)

is the identity, where ¢ is the co-unit. Since the latter is invertible by assumption,
so is F(nx) : F(X) — FGF(X). In particular F(K) ~ 0, hence also a(K) ~ 0 by
the assumption on «. The same argument applies to the cokernel so we find that
a(nx) is an isomorphism fF(X) = aGF(X) ~ a(X). The argument is natural in
X so we get an isomorphism of functors SF ~ « as desired.
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(iii) [Thanks to V. Sosnilo for this argument.] The existence of the functor comes
from the universal property: the inclusion functor Ay < A clearly sends B N Ay
to B. For objects X and Y of Agy, we need to show that the map

HOmAO/(‘BﬂAO)<X,Y) — HOIHA/B (X, Y)

is bijective. An element of the target can be represented by a zig-zag in A

X/ZXY

where f is a B-isomorphism, i.e., Ker(f) and Coker(f) are contained in B. This
represents the morphism go f~!: X — Y in A/B.

Consider the short exact sequence
0 — Im(f) - X — Coker(f) — 0.

Since X € Ag and Coker(f) € B, the assumption implies Coker(f) € Ay and
hence also Z/ Ker(f) = Im(f) € Ap. Consider the commutative diagram of short
exact sequences

0 —— Ker(f) » 7 —L— 7/Ker(f) —— 0

| : g

0 —— g(Ker(f)) > Y —2= Y/g(Ker(f)) —— 0

Since Ker(f) € B, also g(Ker(f)) € B since B is a Serre subcategory. Since Y € Ay
it also follows by the assumption that g(Ker(f)) € Ag. Since Ay is abelian, then
Y = Y/g(Ker(f)) is also in Ag. In particular, ¢ is a (B N Ap)-isomorphism
between objects of Ay. The commutative diagram

X/ pxy/
Sl
Z/ Ker(f)

exhibits an equivalence between the two zig-zags X «+ Z — Y’ and X <«
Z/Ker(f) — Y'. In particular, ¢ggf~* and §7_1 represent the same morphism
X — Y’"in A/B. It follows that ¢ lqgf~' = gf~* and q*1§7_1 represent the same
morphism X — Y in A/B. In other words, the zig-zags X < Z/Ker(f) — Y’
and Y’ <= Y — Y both represent morphisms in Ag/(Ag N B) which compose to a
morphism whose image in A/B is equivalent to our original morphism g o f~.

2. Let A be aring and f € A an element.
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(i) Let Moda(f*°) € Moda denote the full subcategory of A-modules M that are
f>=-torsion (i.e., for every z € M, f*zr =0 for k> 0). Show that this is a Serre
subcategory and that the canonical functor

MOdA/(MOdA(fOO)) — MOdA[f—q
is an equivalence.

(ii) Assume that A is noetherian. Show that the canonical functor

Modi§ /(Modi§(f>)) — Modg, .,

is fully faithful.

(iii) Let B = A[f~!]. Show that every f.g. B-module N lifts to a f.g. A-module M
such that M ® B ~ N. Deduce that the canonical functor

Mod /(Mod(f>)) — Mody,,

is an equivalence. (Hint: consider Njy; € Mod,, which may not be f.g. However

you can find a surjection A®°® — N4 from a free A-module indexed on a (possibly
infinite) set I...)

(i) Consider the exact functor
(=) ®@a A[f 7] : Mody — Mod -1y

Its kernel consists of A-modules M such that M[f~!] = 0, or equivalently, M is
f-torsion. In other words, this is the full subcategory Moda (f*°). Thus by
Exercise 1(i), the latter is a Serre subcategory. Recall that (—) ®a A[f™] is left
adjoint to the restriction of scalars functor (—)pa). The latter is fully faithful (note
that A[f~!'] ®@a A[f~1] = A[f~!] and then argue as in the proof that restriction of
scalars along A — A /I is fully faithful, §1.2). Now the claim follows from Exercise

1(ii).
(ii) We want to apply Exercise 1(iii) to the Serre subcategory Moda (f*°) € Moda
and the subcategory Modﬁ_{g C Mody. The condition is that if M € Modig and

N € Moda(f™) is a subobject or quotient of M, then N is also f.g. This is clear
since A is noetherian. Thus Exercise 1(iii) yields that

Modj/(ModZ (£)) = Moda/(Moda ()

is fully faithful. By (i) the target is equivalent to Moda[s-1}, so we have shown
that

Mod¥/(Mod¥(£>°)) — Mod a1
is fully faithful. But this functor lands in the full subcategory Modig[
induced functor

1] and the

fy fg / poo f
Mody/(Modg(f>)) = Mod ;-
must then also be fully faithful.

(iif) Consider the A-module Nj5j. We can find a surjection ¢ : A®W — Ny from
a free A-module indexed on a (possibly infinite) set I (for example, take I to be
the set of elements of N). These correspond to elements ¢; € N for i € I. Since
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Nia) ®a B ~ N is f.g., we know that there exists a finite subset J C I such that
the induced map B®) — N is surjective. Let M C Nia] be the image of the map
A®U) Naj. It is then f.g. and satisfies M ®s B ~ N by construction. This
shows that the functor in question is essentially surjective, and it was already
shown to be fully faithful in part (ii).

. Let A be a noetherian ring.

(i) Show that ¢ : A — A[T] induces is an injective homomorphism
9" : Go(A) = Go(A[T]).

(Hint: Note that ¢ admits a retraction in the category of commutative rings...)
(i) If A is a field k, show that ¢* : Go(k) — Go(k[T]) is an isomorphism.

(i) Note that ¢ : A — A[T] is flat and in particular of finite Tor-amplitude.
Therefore there is a well-defined homomorphism ¢* : Go(A) — Go(A[T]) (see
§6.3). Let o : A[T] — A be the ring homomorphism T — 0. Since o o ¢ = id, we
have (see §6.3)

o ¢* =1id : Go(A) — Go(A).
In particular, ¢* is injective.

(ii) It remains to show that ¢* is surjective. Note that we have a commutative
square

Since k and k[T] are regular rings (see §2.3 in the lecture), the vertical arrows
are invertible. The upper horizontal arrow is also invertible: for both k& and k[T],
every f.g. projective module is free, so the map is identified with the identity
id : Z — Z. It follows that the lower horizontal arrow is also invertible.

. Let A be an integral domain. Given an element f € A and a point p € |Spec(A) ,
the value of f at p, denoted f(p), is the image of f by the homomorphism
¢ : A — k(p). (Elements of A are thought of as “algebraic functions” on Spec(A).)

(i) Show that if an element f vanishes at the generic point n then f = 0.

(i) Give an example to show that if A is not an integral domain, then an element
f € A can vanish at every point without being zero.

(Use the definition of [Spec(A)| given in the lecture, not the one using prime
ideals.)

(i) Since A < k(n) = Frac(A) is injective, we have f(n) = 0 iff f = 0.
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(ii) Consider the ring of dual numbers A = k[e]/{¢?) over a field k. Recall that
A has a single point p = [A — k]. The element € € A has value (p) = 0 at this
point, but ¢ # 0.



