Exercise sheet 6

1. Let A be a noetherian ring. Show that Gy(A) is generated by classes [A/p] where
p is a prime ideal.

Recall from Lecture 1 that every f.g. A-module M admits a finite filtration whose
quotients are A-modules of the form A/p, with p C A prime. Then by the

Observation in §6.3,
M] =) [A/p]
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where {p;}; is a finite set of prime ideals.

2. Let A be a commutative ring. A chain complex M, of A-modules is called formal
if it is quasi-isomorphic to
P H L)L,

i€Z
the complex with H;(M,) in degree ¢ and all differentials zero.
(i) Let k be a field. Show that every chain complex of k-modules is formal.

(ii) Give an example of a non-formal complex over a commutative ring A.

(i) Let Vo € Chg. Write H; := H;(V,) for all i € Z for simplicity, and H, :=
P,z Hilz]. It will suffice to construct a morphism of chain complexes

®: Ve — He
inducing the identity maps H; — H; on homologies.

Set Z; := Ker(d;) and B; := Im(d, 1) so that H; = Z;/B; for all i. Since k is a
field, both short exact sequences

0—=+7%2; =V, —DB,_; =0,
0—B,—~%2,—H, =0
split, whence isomorphisms
V,~7,®B;,_1 2B, ®H, ®B,_;.

Under these isomorphisms, the differential d; : V; — V;_; is induced by id :
B;_1 — B;_1 (and zero on the other components).

We define the morphism ¢ : Vo, — H, by the projections

V,~B,oH, @B, 5 H;
for each 4. This is clearly a morphism of chain complexes that induces identity
maps on homologies, hence it is a quasi-isomorphism.

(ii) It is somewhat tricky to show that two complexes are not quasi-isomorphic,
when they happen to have the same homology groups. One way to proceed is

by noting that some properties are invariant under quasi-isomorphism, such as
1
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perfectness or finite Tor-amplitude. Thus it will suffice to construct a perfect
complex M, which has at least two nontrivial homology groups, at least one of
which is not perfect. This will only be possible if the ring A is not regular (a
perfect complex has f.g. homology groups, so if the ring is regular, the homology
groups are perfect). Such an M, will have H, := @, H;(M,)[:] not perfect, hence
there will be no quasi-isomorphism M, ~ H,.

Let k be a field and A = k[e]/(€?). Consider the complex of A-modules
M, = <0—>Ai>A—>O>.

Note that M, is a finite complex of f.g. free modules, so it is perfect. But we
have Ho(M,) = k and from Sheet 2 we know that & is not perfect as an A-module.
Thus H, can not be perfect either. Indeed it will have infinite Tor-amplitude as

H, @% N = P H;(M,)[i] ®% N = @) (H;(M,) @% N) [i
icz icz
for any A-module N, and so H,,(H, ®% N) will contain H, (H(M,) ®@% N) # 0 for
all n > 0.

. (i) Let A be a commutative ring and I C A an ideal contained in the Jacobson
radical of A. Show that the homomorphism M(A) — M(A/I), given by extension
of scalars along the quotient map ¢ : A — A/I, is injective. Recall that M(A)
denotes the monoid of isomorphism classes of f.g. projective A-modules. (Hint:
Nakayama.)

(ii) Suppose that I is a nil ideal, i.e., that every element = € I is nilpotent. Let
¢ A — A/I be the quotient map. Show that the homomorphism ¢* : Ko(A) —
Ko(A/I) is invertible. (Hint: use the fact that idempotents lift along nil ideals in
associative rings, and apply this to the algebra of endomorphisms of A®™.)

(_1) Let M and N be f.g. projective A-modules and suppose there exists a morphism
¢ : M/IM — N/IM of A/I-modules. Since M is projective, there exists a morphism
¢ : M — N such that the diagram

M—2 4N

| |

M/IM —%— N/IN
commutes. If ¢ is surjective, then so is ¢. Equivalently, Q = Coker(¢) is zero iff
Q/1Q = 0; this follows from Nakayama since I is contained in the Jacobson radical
and since Q) is finitely generated. Now suppose that ¢ is also injective. Then
since M is projective and ¢ is surjective, it admits a section ¢ : N — M and M
splits as a direct sum K @ N, where K = Ker(¢). Now we have K/IK = 0 since ¢
induces an isomorphism M/IM ~ N/IN by assumption. Thus by Nakayama again
(since K is also f.g.), we conclude that K = 0. In particular, ¢ is an isomorphism.
This discussion shows that every A/I-module isomorphism M/IM ~ N/IM lifts to
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an A-module isomorphism M ~ N. In particular, the map M(A) — M(A/I) is
injective.

(ii) First of all, note that every nil ideal is contained in the Jacobson radical.
For injectivity, let z € Ko(A) such that ¢*(z) = 0 in K¢(A/I). By the Lemma in
§3.1, we can write z = [M] — [A®"], where M € Mod"¥" and n > 0. Then we
have [M/IM] = [(A/I)®"] € K¢(A/I) so by part (ii) of the same Lemma, we deduce
that M/IM & (A /1)%% ~ (A/T)®"** for some k > 0. Then by claim (i) above, it
follows that M @& A%k ~ APtk a5 A-modules, and in particular [M] = [A®"] in
Ko(A), i.e., z =0.

For surjectivity, it will suffice to show that every f.g. projective A/I-module N
lifts to a f.g. projective A-module M (for which M ®, A/I = N). Since N is a
direct summand of a f.g. free module (A/T)®", there is a corresponding projector
(= idempotent endomorphism)

e: (A" - N < (A/))*"
whose image is N. Applying the hint to the homomorphism of matrix rings
Enda (A®") — End, 1((A/1)®")

(which is the quotient by a nil ideal), we deduce that there exists an idempotent
endomorphism e : A®" — A®" lifting €. The image of e is a f.g. projective
A-module M lifting N.

For a proof of the claim in the hint, see e.g. [Bass, Algebraic K-theory, Chap. 111,
Prop. 2.10].

. Let ¢ : A — B be a ring homomorphism which exhibits B as a f.g. free A-module
of rank d. Then we have [B] = d.[A] = d in Ky(A). Show that the composites

(B) 25 Ko(A)

Ko(A) £
2 Ko(A) L5 Ko(B)

0 Ko
Ko(B) Ko
are both given by multiplication by d.

By assumption, B is flat as an A-module. In particular, the square

A—2 B

[+ s

B—» BesB=DB

is Tor-independent. Thus by the base change formula (§6.2) we have

¢*¢* = B*C(* : Ko(B) — K()(B)
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Take z = [N] — [B®"] € Ko(B), N € Mod”™ and n > 0 (recall every = can be
written in this form, by §3.1). We have
Bua*(x) = B.([N @ B®a B] — [B¥" @5 B ®, B])

= [N®g B]U [B] — [B®" @ B] U [B]

=z Ud
as desired.
For the composite ¢,¢* we first note

¢.¢"[A] = ¢:[B] = [Bpy)] = d.
Then by the projection formula,
dUz = (90" [A) Uz = ¢.(¢"[A] U ¢"(2)) = 00" ([A] U ) = 0" ().

(Recall that ¢* is a ring homomorphism and that [A] is the unit of the ring
structure on Ko(A).)



