Lecture 7

The projective bundle formula

Our goal for this lecture is to prove the following:

Theorem 1. Let S be a qcqs derived scheme. Let \mathcal{E} be a locally free \mathcal{O}_S -module of rank n + 1, and $p : \mathbf{P}_S(\mathcal{E}) \to S$ the associated projective bundle. Then the canonical homomorphisms

$$\mathrm{K}_{0}(\mathrm{S}) \to \mathrm{K}_{0}(\mathbf{P}_{\mathrm{S}}(\mathcal{E})), \quad [\mathfrak{F}] \mapsto [p^{*}(\mathfrak{F}) \otimes \mathcal{O}(-k)],$$

for $0 \leq k \leq n$, induce a bijection

$$\mathcal{K}_0(\mathbf{P}_{\mathcal{S}}(\mathcal{E})) \simeq \bigoplus_{i=0}^n \mathcal{K}_0(\mathcal{S})$$

In particular, $K_0(\mathbf{P}_S(\mathcal{E}))$ is freely generated as a $K_0(S)$ -module by the classes $[\mathcal{O}(0)], \ldots, [\mathcal{O}(-n)]$.

In order to prove Theorem 1 we will analyze the structure of the stable ∞ -category $\operatorname{Qcoh}(\mathbf{P}_{S}(\mathcal{E}))$.

Definition 2. Let **C** be a stable ∞ -category and **D** a stable full subcategory. An object $x \in \mathbf{C}$ is *left orthogonal* (resp. *right orthogonal*) to **D** if the mapping space $\operatorname{Maps}_{\mathbf{C}}(x, d)$ (resp. $\operatorname{Maps}_{\mathbf{C}}(d, x)$) is contractible for all objects $d \in \mathbf{D}$. We let $^{\perp}\mathbf{D} \subset \mathbf{C}$ and $\mathbf{D}^{\perp} \subset \mathbf{C}$ denote the full subcategories of left orthogonal and right orthogonal objects, respectively.

Theorem 3. Let S be a qcqs derived scheme. Let \mathcal{E} be a locally free \mathcal{O}_S -module of rank n + 1, and $p : \mathbf{P}_S(\mathcal{E}) \to S$ the associated projective bundle. Then we have:

(i) For all integers k, the assignment $\mathfrak{F} \mapsto p^*(\mathfrak{F}) \otimes \mathfrak{O}(k)$ defines a fully faithful functor $\operatorname{Qcoh}(S) \to \operatorname{Qcoh}(\mathbf{P}_S(\mathcal{E}))$.

(ii) If $\mathbf{C}(k) \subset \operatorname{Qcoh}(\mathbf{P}_{\mathrm{S}}(\mathcal{E}))$ denotes the essential image of the functor in (i), then we have $\mathbf{C}(k) \subset {}^{\perp}\mathbf{C}(k-i)$ for all integers k and $1 \leq i \leq n$.

(iii) For any integer k, the ∞ -category $\operatorname{Qcoh}(\mathbf{P}_{\mathrm{S}}(\mathcal{E}))$ is generated by the subcategories $\mathbf{C}(k), \ldots, \mathbf{C}(k-n)$. *n*). That is, every object $\mathcal{F} \in \operatorname{Qcoh}(\mathbf{P}_{\mathrm{S}}(\mathcal{E}))$ belongs to the full subcategory $\langle \mathbf{C}(k), \ldots, \mathbf{C}(k-n) \rangle$ they generate under finite colimits and limits.

Theorem 3 can be summarized by saying that the collection of subcategories $\mathbf{C}(k), \ldots, \mathbf{C}(k-n)$ forms a *semi-orthogonal decomposition* for each k.

Definition 4. Let **C** be a stable ∞ -category and let $\mathbf{C}(0), \ldots, \mathbf{C}(-n)$ be full stable subcategories. Suppose that the following conditions hold:

(i) $\mathbf{C}(i) \subset {}^{\perp}\mathbf{C}(j)$ for all integers i > j.

(ii) The ∞ -category **C** is generated by the subcategories $\mathbf{C}(0), \ldots, \mathbf{C}(-n)$.

Then we say that the subcategories $\mathbf{C}(0), \ldots, \mathbf{C}(-n)$ form a *semi-orthogonal decomposition* of \mathbf{C} , and we write $\mathbf{C} = \langle \mathbf{C}(0), \ldots, \mathbf{C}(-n) \rangle$.

In order to prove Theorem 3 we will need some preliminaries on derived projective geometry. Let S = Spec(R) with $R \in SCRing$ and let $\mathcal{E} = \mathcal{O}_{S}^{\oplus n+1}$, so that $p : \mathbf{P}_{S}(\mathcal{E}) = \mathbf{P}_{R}^{n} \to Spec(R)$ is *n*-dimensional projective space over R. Recall from Lect. 5:

Theorem 5 (Serre). Given a tuple $k = (k_0, \ldots, k_n) \in \mathbb{Z}^{n+1}$ with $k_i \ge 0$ for each *i*, set $m = k_0 + \cdots + k_n$. There is an associated R-linear map

$$x^k : \mathbf{R} \to \varprojlim_{\varnothing \neq \mathbf{I} \subset [n]} \mathbf{R}[\mathbf{M}_{\mathbf{I}}(m)] \simeq \Gamma(\mathbf{P}^n_{\mathbf{R}}, \mathcal{O}(m)).$$

• If $m \ge 0$, then $\Gamma(\mathbf{P}^n_{\mathbf{R}}, \mathcal{O}(m))$ is free of rank $\binom{m+n}{n}$, generated by the global sections x^k .

If m < 0, then Γ(**P**ⁿ_R, O(m)) is a direct sum of ^(-m-1)_n copies of R[-n]. In particular, it is zero if −1 ≥ m ≥ −n.

Corollary 6. We have $p_* \mathcal{O}(0) \simeq \mathcal{O}_S$ and $p_* \mathcal{O}(m) = 0$ for $-1 \ge m \ge -n$.

For each $0 \leq i \leq n$ we have canonical map $x_i : \mathcal{O}(0) \to \mathcal{O}(1)$ (which is induced by the map x^k above with k the vector with $k_i = 1$ and $k_j = 0$ for $j \neq i$). These maps give rise, by taking tensor products, to a cubical diagram

$$\mathbf{P}([n]) \to \mathbf{Qcoh}(\mathbf{P}^n_\mathbf{R}), \quad \mathbf{J} \mapsto \bigotimes_{j \in \mathbf{J}} \mathbf{O}(1) \simeq \mathbf{O}(\#\mathbf{J}),$$

where P([n]) is the set of subsets of [n], and #J is the cardinality of a subset $J \subset [n]$.

Lemma 7. This is a colimit diagram. That is, there is a canonical isomorphism

$$\varinjlim_{\mathbf{J}\subsetneq [n]} \mathbb{O}(\#\mathbf{J}) \xrightarrow{\sim} \mathbb{O}(n+1)$$

in $\operatorname{Qcoh}(\mathbf{P}_{\mathrm{R}}^{n})$.

We can tensor this isomorphism with any $\mathcal{O}(k)$, $k \in \mathbb{Z}$. Since the ∞ -category $\operatorname{Qcoh}(\mathbf{P}_{\mathrm{R}}^{n})$ is stable, this lemma implies that all the sheaves $\mathcal{O}(m)$ can be built out of $\mathcal{O}(0), \ldots, \mathcal{O}(n)$ using finite colimits and limits. For example, for n = 1 we get squares

$$\begin{array}{c} \mathbb{O}(k) \longrightarrow \mathbb{O}(k+1) \\ \downarrow \qquad \qquad \downarrow \\ \mathbb{O}(k+1) \longrightarrow \mathbb{O}(k+2) \end{array}$$

for each $k \in \mathbf{Z}$, that are cocartesian and cartesian.

Proof of Lemma 7. Using the canonical equivalence

$$\operatorname{Qcoh}(\mathbf{P}^n_{\mathrm{R}}) \xrightarrow{\sim} \varprojlim_{\varnothing \neq \mathrm{I} \subset [n]} \operatorname{Mod}_{\mathrm{R}[\mathrm{M}_{\mathrm{I}}]},$$

we see that it suffices to check the isomorphism in question after restriction along each of the open immersions $j_{\rm I}$: Spec(R[M_I]) \rightarrow $\mathbf{P}_{\rm R}^n$. But $(j_{\rm I})^*(x_i): (j_{\rm I})^*\mathcal{O}(0) \rightarrow (j_{\rm I})^*\mathcal{O}(1)$ is invertible by construction whenever $i \in {\rm I}$, so the claim is clear.

Lemma 8. Let $\mathcal{F} \in \operatorname{Qcoh}(\mathbf{P}^n_{\mathrm{R}})$ be a connective quasi-coherent sheaf. Then there exists a map

$$\mu:\bigoplus_{\alpha} \mathcal{O}(d_{\alpha}) \to \mathcal{F}_{\alpha}$$

with $d_{\alpha} \in \mathbf{Z}$, which is surjective on π_0 .

Proof. For each $I \subset [n]$, let $M_I^+ \subset \mathbb{Z}^{n+1}$ be the submonoid of tuples (k_0, \ldots, k_n) such that $k_i \ge 0$ for $i \notin I$. Then $M_I \subset M_I^+$ is the subset of tuples satisfying the further condition that $k_0 + \cdots + k_n = 0$. We have a canonical map

$$q: \mathcal{U} = \varinjlim_{\varnothing \neq \mathcal{I} \subset [n]} \operatorname{Spec}(\mathcal{R}[\mathcal{M}_{\mathcal{I}}^+]) \to \varinjlim_{\varnothing \neq \mathcal{I} \subset [n]} \operatorname{Spec}(\mathcal{R}[\mathcal{M}_{\mathcal{I}}]) \simeq \mathbf{P}_{\mathcal{R}}^n$$

Note that $q_* \mathcal{O}_U \simeq \bigoplus_{m \in \mathbb{Z}} \mathcal{O}(m)$ and that q is faithfully flat. Note that U can also be described as the vanishing locus $D(x_0, \ldots, x_n)$ in $X = \operatorname{Spec}(\mathbb{R}[x_0, \ldots, x_n])$. Let $j : U \hookrightarrow X$ denote the open immersion.

Since X is affine, we can construct a map

$$\bigoplus_{\alpha} \mathfrak{O}_{\mathbf{X}} \to j_* q^*(\mathcal{F})$$

 $\mathbf{2}$

that is surjective on π_0 (for example, take the sum of the maps $\mathcal{O}_X \to j_*q^*(\mathcal{F})$ corresponding to each element of π_0 of the target). Applying j^* this induces a map

$$\rho_{\mathcal{U}}:\bigoplus_{\alpha}\mathfrak{O}_{\mathcal{U}}\to q^*(\mathfrak{F})$$

which is still surjective on π_0 . By adjunction this corresponds to a map $\bigoplus_{\alpha} \mathcal{O}(0) \to q_*q^*(\mathcal{F})$, where by the projection formula the target is identified with $q_*(\mathcal{O}_U) \otimes \mathcal{F} \simeq \bigoplus_{m \in \mathbb{Z}} \mathcal{F} \otimes \mathcal{O}(m)$. Thus we get a collection of maps

$$\rho_{\alpha}: \mathcal{O}(0) \to \bigoplus_{m \in \mathbf{Z}} \mathfrak{F} \otimes \mathcal{O}(m)$$

for each α . Since $\mathcal{O}(0)$ is a compact object (as it is a perfect complex on the quasi-compact quasi-separated derived scheme $\mathbf{P}_{\mathrm{R}}^{n}$), it follows that each ρ_{α} factors through a map

$$\rho_{\alpha}: \mathcal{O}(0) \to \bigoplus_{|m| \leqslant c_{\alpha}} \mathfrak{F} \otimes \mathcal{O}(m),$$

for some integer $c_{\alpha} \ge 0$. Equivalently, we get maps $\rho_{\alpha,m} : \mathcal{O}(-m) \to \mathcal{F}$ for each α and all $|m| \le c_{\alpha}$. Let μ denote the induced map

$$\mu: \mathfrak{G} = \bigoplus_{\alpha, |m| \leqslant c_{\alpha}} \mathfrak{O}(-m) \to \mathfrak{F}.$$

It suffices to show that μ is surjective on π_0 . Since q is faithfully flat it suffices to show this after applying q^* . This follows from the fact that the map $\rho_U : \bigoplus_{\alpha} \mathcal{O}_U \to q^*(\mathcal{F})$ is surjective on π_0 and factors through $q^*(\mu)$ by construction.

In order to get statements about general projective bundles $\mathbf{P}_{S}(\mathcal{E})$, we will use fpqc descent for quasi-coherent sheaves. The important point for us is that we can check invertibility of a given morphism in Qcoh(S) fpqc-locally.

Theorem 9. The assignments $S \mapsto Qcoh(S)$ and $S \mapsto Perf(S)$ satisfy fpqc descent (as presheaves on the ∞ -category of qcqs derived schemes). In particular, for any fpqc covering family $(f_{\alpha} : S_{\alpha} \to S)_{\alpha}$, the family of functors $(f_{\alpha}^*)_{\alpha}$ is conservative.

We are now ready to prove Theorem 3.

Proof of Theorem 3. Since O(k) are invertible, the functors $-\otimes O(k)$ are invertible for all $k \in \mathbb{Z}$. Therefore we can assume k = 0 in all the statements.

For claim (i) we want to show that the unit map $\mathcal{F} \to p_*p^*(\mathcal{F})$ is invertible for all $\mathcal{F} \in \operatorname{Qcoh}(S)$. Using Theorem 9 and base change for p_* , we can reduce to the case where $S = \operatorname{Spec}(R)$ is affine and $\mathcal{E} = \mathcal{O}_S^{n+1}$ is free (by choosing an affine cover of S such that the restrictions of \mathcal{E} are all free). Now both functors p^* and p_* are exact and moreover commute with arbitrary colimits (the latter since p is quasi-compact), and $\operatorname{Qcoh}(S) \simeq \operatorname{Mod}_R$ is generated by \mathcal{O}_S under colimits and finite limits, so that we may assume $\mathcal{F} = \mathcal{O}_S$. Then it suffices to show that the canonical map in Mod_R

$$\Gamma(\mathbf{S}, \mathcal{O}_{\mathbf{S}}) \to \Gamma(\mathbf{S}, p_*\mathcal{O}(0))$$

is invertible. This follows from Serre's theorem (Corollary 6).

For claim (ii), let $\mathcal{F}, \mathcal{G} \in \text{Qcoh}(S)$ and consider the mapping space

$$\operatorname{Maps}(p^*(\mathcal{F}), p^*(\mathcal{G}) \otimes \mathcal{O}(-i))$$

for $1 \leq i \leq n$. By adjunction and the projection formula, this is identified with the space $\operatorname{Maps}(\mathcal{F}, p_*(\mathcal{O}(-i)) \otimes \mathcal{G})$. It suffices to show that $p_*(\mathcal{O}(-i)) \simeq 0$. This follows from Serre's theorem (Corollary 6), after using Zariski descent (Theorem 9) and base change for p_* .

For claim (iii), let $\mathcal{F} \in \operatorname{Qcoh}(\mathbf{P}_{\mathrm{S}}(\mathcal{E}))$. We define a sequence $\mathcal{G}_0, \ldots, \mathcal{G}_n$ of objects of $\operatorname{Qcoh}(\mathbf{P}_{\mathrm{S}}(\mathcal{E}))$, depending on \mathcal{F} , such that each \mathcal{G}_m is right orthogonal to each of the subcategories $\mathbf{C}(0), \ldots, \mathbf{C}(m)$, for each $m \ge 0$, and such that we have exact triangles

(0.1)
$$p^*p_*(\mathfrak{G}_m \otimes \mathfrak{O}(1)) \xrightarrow{\text{counit}} \mathfrak{G}_m \otimes \mathfrak{O}(1) \to \mathfrak{G}_{m+1}.$$

For m = 0 we define \mathcal{G}_0 so that it fits into an exact triangle

$$p^*p_*(\mathcal{F}) \xrightarrow{\text{counit}} \mathcal{F} \to \mathcal{G}_0$$

Since $p^*p_*(\mathcal{F}) \in \mathbf{C}(0)$ it follows that the cofibre \mathfrak{G}_0 is right orthogonal to $\mathbf{C}(0)$.

Now suppose that we have defined \mathcal{G}_m , $0 \leq m < n$, so that the exact triangle (0.1) defines \mathcal{G}_{m+1} inductively. We need to show that \mathcal{G}_{m+1} is right orthogonal to all the subcategories $\mathbf{C}(0), \ldots, \mathbf{C}(m+1)$. For $\mathbf{C}(0)$, this follows from the fact that $p^*p_*(\mathcal{G}_m \otimes \mathcal{O}(1))$ is contained in $\mathbf{C}(0)$. For $\mathbf{C}(i)$, $0 < i \leq m+1$, we observe that the left-hand and middle terms of the triangle (0.1) are both right orthogonal to $\mathbf{C}(i)$. Indeed, we have $\mathbf{C}(0) \subset \mathbf{C}(i)^{\perp}$ by (ii), so this takes care of the left-hand term. For the middle term $\mathcal{G}_m \otimes \mathcal{O}(1)$ the claim follows by the induction hypothesis.

Now we claim that \mathcal{G}_n is zero. Using descent again (Theorem 9), we may assume that $S = \text{Spec}(\mathbb{R})$ and $\mathcal{E} = \mathcal{O}_{S}^{\oplus n+1}$ (observe that the sequence $(\mathcal{G}_0, \ldots, \mathcal{G}_n)$ is stable under base change). Then using Lemma 7 we deduce that \mathcal{G}_n is right orthogonal to all $\mathbf{C}(i), i \in \mathbf{Z}$ (not just for $0 \leq i \leq n$). Using Lemma 8 we can build a map

$$\bigoplus_{\alpha} \mathcal{O}(m_{\alpha})[k_{\alpha}] \to \mathfrak{G}_n$$

which is surjective on all homotopy groups. But the source of this map belongs to the stable subcategory generated by the $\mathbf{C}(i)$'s, $i \in \mathbf{Z}$, so this map must be null-homotopic. It follows that $\mathcal{G}_n \simeq 0$. Working backwords, we deduce that $\mathcal{G}_{n-1} \in \mathbf{C}(-1), \ldots, \mathcal{G}_0 \in \langle \mathbf{C}(-1), \ldots, \mathbf{C}(-n) \rangle$, and finally that $\mathcal{F} \in \langle \mathbf{C}(0), \mathbf{C}(-1), \ldots, \mathbf{C}(-n) \rangle$ as claimed.

Using the same ingredients (Theorem 5 and Lemma 8) one can show the following:

Exercise 10. The functor $p_* : \operatorname{Qcoh}(\mathbf{P}^n_{\mathrm{S}}) \to \operatorname{Qcoh}(\mathrm{S})$ preserves almost perfect, resp. perfect complexes.

This implies that we have a direct image homomorphism

$$p_*: \mathrm{K}_0(\mathbf{P}^n_{\mathrm{S}}) \to \mathrm{K}_0(\mathrm{S}).$$

We can now prove Theorem 1:

Proof of Theorem 1. Let $[\mathcal{F}_i] \in \mathrm{K}_0(\mathrm{S})$ such that $\sum_{i=0}^n [p^*(\mathcal{F}_i) \otimes \mathcal{O}(-i)] = 0$. Applying p_* and using the projection formula, we get

$$0 = \sum_{i=0}^{n} [\mathcal{F}_i \otimes p_* \mathcal{O}(-i)] = [\mathcal{F}_0],$$

by Corollary 6. Similarly, applying $x \mapsto p_*([\mathfrak{O}(1)] \cdot x)$ we deduce that $[\mathfrak{F}_1] = 0$. Continuing in this way we find that $[\mathfrak{F}_i] = 0$ for all i, which shows that the map $\varphi : \bigoplus_{i=0}^n \mathrm{K}_0(\mathrm{S}) \to \mathrm{K}_0(\mathbf{P}_{\mathrm{S}}(\mathcal{E}))$ is injective. For surjectivity, use the sequence $\mathfrak{G}_0, \ldots, \mathfrak{G}_n$ and the exact triangles constructed in the proof of Theorem 3, to write any $[\mathfrak{F}] \in \mathrm{K}_0(\mathbf{P}_{\mathrm{S}}(\mathcal{E}))$ as a sum of elements in the image of φ .