Lecture 7
The projective bundle formula

Our goal for this lecture is to prove the following:

Theorem 1. Let S be a qcgs derived scheme. Let € be a locally free Og-module of rank n+ 1,
and p : Ps(&) — S the associated projective bundle. Then the canonical homomorphisms

Ko(S) = Ko(Ps(€)), [F] = [p*(F) @ O(=F)];

for 0 < k < n, induce a bijection
Ko(Ps(€)) ~ P Ko(S).
i=0
In particular, Ko(Ps(€)) is freely generated as a Ko(S)-module by the classes [0(0)],...,[O(—n)].

In order to prove Theorem 1 we will analyze the structure of the stable oco-category
Qcoh(Pg(&)).

Definition 2. Let C be a stable oco-category and D a stable full subcategory. An object
x € C is left orthogonal (resp. right orthogonal) to D if the mapping space Mapsq(x, d) (resp.
Maps(d, ) is contractible for all objects d € D. We let “D C C and D+ C C denote the full
subcategories of left orthogonal and right orthogonal objects, respectively.

Theorem 3. Let S be a qcgs derived scheme. Let € be a locally free Og-module of rank n + 1,
and p : Pg(&) — S the associated projective bundle. Then we have:

(i) For all integers k, the assignment F — p*(F)@O(k) defines a fully faithful functor Qcoh(S) —
Qeoh(Ps(£)).

(ii) If C(k) C Qcoh(Pgs(&)) denotes the essential image of the functor in (i), then we have
C(k) C +C(k —1) for all integers k and 1 <i < n.

(iil) For any integer k, the oo-category Qcoh(Pg(€)) is generated by the subcategories C(k), ..., C(k—
n). That is, every object F € Qcoh(Pg(&)) belongs to the full subcategory (C(k),...,C(k —n))
they generate under finite colimits and limits.

Theorem 3 can be summarized by saying that the collection of subcategories C(k), ..., C(k—n)
forms a semi-orthogonal decomposition for each k.

Definition 4. Let C be a stable co-category and let C(0), ..., C(—n) be full stable subcategories.
Suppose that the following conditions hold:

(i) C(i) ¢ +C(j) for all integers i > j.

(ii) The oo-category C is generated by the subcategories C(0), ..., C(—n).

Then we say that the subcategories C(0),...,C(—n) form a semi-orthogonal decomposition
of C, and we write C = (C(0),...,C(—n)).

In order to prove Theorem 3 we will need some preliminaries on derived projective geometry.
Let S = Spec(R) with R € SCRing and let &€ = OF"*", so that p : Ps(€) = PR — Spec(R) is
n-dimensional projective space over R. Recall from Lect. 5:

Theorem 5 (Serre). Given a tuple k = (ko,...,k,) € Z™"™ with k; > 0 for each i, set
m=ko+ - -+ ky,. There is an associated R-linear map
"R — Jim R[M;i(m)] ~ T(P%, O(m)).

D#IC[n]

o Ifm >0, then T'(PRE,0(m)) is free of rank (m+"), generated by the global sections x*.
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e Ifm <0, then T(PR,0(m)) is a direct sum of (T"") copies of R[—n]. In particular,
it is zero if —1 > m > —n.

Corollary 6. We have p,O(0) ~ Og and p.O(m) =0 for =1 > m > —n.

For each 0 < ¢ < n we have canonical map ; : O(0) — O(1) (which is induced by the map
x* above with k the vector with k; = 1 and k; = 0 for j # 7). These maps give rise, by taking
tensor products, to a cubical diagram

P([n]) = Qcoh(PR), I Q) O(1) = O(#J),
Jj€EJ
where P([n]) is the set of subsets of [n], and #J is the cardinality of a subset J C [n].

Lemma 7. This is a colimit diagram. That is, there is a canonical isomorphism
lim O(#J) = O(n +1)
ICIn]
in Qcoh(PR).
We can tensor this isomorphism with any O(k), k € Z. Since the oco-category Qcoh(PR) is

stable, this lemma implies that all the sheaves O(m) can be built out of O(0),...,0(n) using
finite colimits and limits. For example, for n = 1 we get squares

O(k) — Ok +1)

| |

Ok +1) — O(k+2)

for each k € Z, that are cocartesian and cartesian.

Proof of Lemma 7. Using the canonical equivalence
Qcoh(PR) = lim  Modgnyy),
GH#IC[n]

we see that it suffices to check the isomorphism in question after restriction along each of the
open immersions j : Spec(R[Mi]) — PL. But (ji)*(x;) : (j1)*O0(0) — (ji)*O(1) is invertible by
construction whenever ¢ € I, so the claim is clear. (|

Lemma 8. Let F € Qcoh(PR) be a connective quasi-coherent sheaf. Then there exists a map
p:@oda) = 7,

with do, € Z, which is surjective on .

Proof. For each I C [n], let M{" C Z"*! be the submonoid of tuples (ko,...,k,) such that
k; > 0 for i ¢ I. Then M C Mf“ is the subset of tuples satisfying the further condition that
ko + -+ k, = 0. We have a canonical map
q:U=lim Spec(R[M[]) — lim Spec(R[M;]) ~ Pg.
@#IC[n) @#1C[n]

Note that ¢.0u >~ ,,cz O(m) and that g is faithfully flat. Note that U can also be described
as the vanishing locus D(zo,...,z,) in X = Spec(R[zg,...,zy]). Let j : U — X denote the
open immersion.

Since X is affine, we can construct a map

P ox - j.a*(9)
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that is surjective on 7y (for example, take the sum of the maps Ox — j.¢*(F) corresponding to
each element of g of the target). Applying j* this induces a map

PUI@OU%q*(E)

which is still surjective on 7. By adjunction this corresponds to a map @, 0(0) — ¢.q¢*(F),
where by the projection formula the target is identified with ¢.(Ov) ® T ~ @,z T ® O(m).
Thus we get a collection of maps

pa: 0(0) = P F ® O(m)
meZ
for each a. Since O(0) is a compact object (as it is a perfect complex on the quasi-compact
quasi-separated derived scheme P},), it follows that each p, factors through a map

Pa : 0(0) — @ F® 0(m),

\m|§ca

for some integer ¢, > 0. Equivalently, we get maps pa.m : O(—m) — F for each a and all
|m| < ¢q. Let p denote the induced map

p:5= P 0o(-m) -7

a,|m|<cq

It suffices to show that p is surjective on my. Since ¢ is faithfully flat it suffices to show this
after applying ¢*. This follows from the fact that the map py : @, Ov — ¢*(F) is surjective on
mo and factors through ¢*(u) by construction. O

In order to get statements about general projective bundles Pg(€), we will use fpqc descent
for quasi-coherent sheaves. The important point for us is that we can check invertibility of a
given morphism in Qcoh(S) fpqe-locally.

Theorem 9. The assignments S — Qcoh(S) and S — Perf(S) satisfy fpqc descent (as presheaves
on the oco-category of qegqs derived schemes). In particular, for any fpge covering family (f, :
Sa = S)a, the family of functors (fX)a is conservative.

We are now ready to prove Theorem 3.

Proof of Theorem 3. Since O(k) are invertible, the functors —® O(k) are invertible for all k € Z.
Therefore we can assume k = 0 in all the statements.

For claim (i) we want to show that the unit map F — p,p*(F) is invertible for all F € Qcoh(S).
Using Theorem 9 and base change for p., we can reduce to the case where S = Spec(R) is affine
and € = Og“ is free (by choosing an affine cover of S such that the restrictions of & are all
free). Now both functors p* and p. are exact and moreover commute with arbitrary colimits
(the latter since p is quasi-compact), and Qcoh(S) ~ Modg is generated by Og under colimits
and finite limits, so that we may assume F = Og. Then it suffices to show that the canonical
map in Modg

I'(S,0g) — T'(S, p.0(0))
is invertible. This follows from Serre’s theorem (Corollary 6).

For claim (ii), let F,§ € Qcoh(S) and consider the mapping space
Maps(p*(5), p*(9) ® O(—1))

for 1 < i < n. By adjunction and the projection formula, this is identified with the space
Maps(F, p«(0(—7)) ® §). It suffices to show that p.(O(—i)) ~ 0. This follows from Serre’s
theorem (Corollary 6), after using Zariski descent (Theorem 9) and base change for p..



For claim (iii), let F € Qcoh(Pg(€)). We define a sequence Gy,...,S, of objects of
Qcoh(Pg(€)), depending on F, such that each G, is right orthogonal to each of the subcategories

C(0),...,C(m), for each m > 0, and such that we have exact triangles
(0.1) P*Pe(Gm ® O(1) “5 Gy © O(1) = G,

For m = 0 we define Gy so that it fits into an exact triangle

counit

P pe(F) —— F = Go.
Since p*p.(F) € C(0) it follows that the cofibre Gy is right orthogonal to C(0).

Now suppose that we have defined G,,,, 0 < m < n, so that the exact triangle (0.1) defines
Sm+1 inductively. We need to show that G,,y1 is right orthogonal to all the subcategories
C(0),...,C(m +1). For C(0), this follows from the fact that p*p.(Gm, ® O(1)) is contained in
C(0). For C(i), 0 <i < m+ 1, we observe that the left-hand and middle terms of the triangle
(0.1) are both right orthogonal to C(i). Indeed, we have C(0) C C(i)1 by (ii), so this takes
care of the left-hand term. For the middle term §,, ® O(1) the claim follows by the induction
hypothesis.

Now we claim that G,, is zero. Using descent again (Theorem 9), we may assume that
S = Spec(R) and & = O?"H (observe that the sequence (Go,...,5Gy) is stable under base

change). Then using Lemma 7 we deduce that G, is right orthogonal to all C(i), i € Z (not just
for 0 < i < n). Using Lemma 8 we can build a map

@ O(ma)[ka] — Gn

which is surjective on all homotopy groups. But the source of this map belongs to the stable
subcategory generated by the C(i)’s, i € Z, so this map must be null-homotopic. It follows that
Gn, ~ 0. Working backwords, we deduce that G,_1 € C(-1), ..., Go € (C(-1),...,C(—n)), and
finally that F € (C(0),C(-1),...,C(—n)) as claimed. O

Using the same ingredients (Theorem 5 and Lemma 8) one can show the following:

Exercise 10. The functor p, : Qcoh(P%) — Qcoh(S) preserves almost perfect, resp. perfect
complexes.

This implies that we have a direct image homomorphism
Px - K()(Pg) — K()(S)

We can now prove Theorem 1:

Proof of Theorem 1. Let [F;] € Ko(S) such that Y. [p*(F;) ® O(—i)] = 0. Applying p. and
using the projection formula, we get
0= [5i®p.0(i)] = [Fo],
i=0
by Corollary 6. Similarly, applying = — p.([0(1)] - ) we deduce that [F;] = 0. Continuing in
this way we find that [F;] = 0 for all ¢, which shows that the map ¢ : @, Ko(S) — Ko(Ps(€))
is injective. For surjectivity, use the sequence Gy, ..., S, and the exact triangles constructed
in the proof of Theorem 3, to write any [F] € Ko(Pg(€)) as a sum of elements in the image of
P. 0



