
Lecture 7
The projective bundle formula

Our goal for this lecture is to prove the following:

Theorem 1. Let S be a qcqs derived scheme. Let E be a locally free OS-module of rank n+ 1,
and p : PS(E)→ S the associated projective bundle. Then the canonical homomorphisms

K0(S)→ K0(PS(E)), [F] 7→ [p∗(F)⊗ O(−k)],

for 0 6 k 6 n, induce a bijection

K0(PS(E)) '
n⊕
i=0

K0(S).

In particular, K0(PS(E)) is freely generated as a K0(S)-module by the classes [O(0)], . . . , [O(−n)].

In order to prove Theorem 1 we will analyze the structure of the stable ∞-category
Qcoh(PS(E)).

Definition 2. Let C be a stable ∞-category and D a stable full subcategory. An object
x ∈ C is left orthogonal (resp. right orthogonal) to D if the mapping space MapsC(x, d) (resp.
MapsC(d, x)) is contractible for all objects d ∈ D. We let ⊥D ⊂ C and D⊥ ⊂ C denote the full
subcategories of left orthogonal and right orthogonal objects, respectively.

Theorem 3. Let S be a qcqs derived scheme. Let E be a locally free OS-module of rank n+ 1,
and p : PS(E)→ S the associated projective bundle. Then we have:

(i) For all integers k, the assignment F 7→ p∗(F)⊗O(k) defines a fully faithful functor Qcoh(S)→
Qcoh(PS(E)).

(ii) If C(k) ⊂ Qcoh(PS(E)) denotes the essential image of the functor in (i), then we have
C(k) ⊂ ⊥C(k − i) for all integers k and 1 6 i 6 n.

(iii) For any integer k, the∞-category Qcoh(PS(E)) is generated by the subcategories C(k), . . . ,C(k−
n). That is, every object F ∈ Qcoh(PS(E)) belongs to the full subcategory 〈C(k), . . . ,C(k − n)〉
they generate under finite colimits and limits.

Theorem 3 can be summarized by saying that the collection of subcategories C(k), . . . ,C(k−n)
forms a semi-orthogonal decomposition for each k.

Definition 4. Let C be a stable∞-category and let C(0), . . . ,C(−n) be full stable subcategories.
Suppose that the following conditions hold:

(i) C(i) ⊂ ⊥C(j) for all integers i > j.

(ii) The ∞-category C is generated by the subcategories C(0), . . . ,C(−n).

Then we say that the subcategories C(0), . . . ,C(−n) form a semi-orthogonal decomposition
of C, and we write C = 〈C(0), . . . ,C(−n)〉.

In order to prove Theorem 3 we will need some preliminaries on derived projective geometry.
Let S = Spec(R) with R ∈ SCRing and let E = O⊕n+1

S , so that p : PS(E) = Pn
R → Spec(R) is

n-dimensional projective space over R. Recall from Lect. 5:

Theorem 5 (Serre). Given a tuple k = (k0, . . . , kn) ∈ Zn+1 with ki > 0 for each i, set
m = k0 + · · ·+ kn. There is an associated R-linear map

xk : R→ lim←−
∅6=I⊂[n]

R[MI(m)] ' Γ(Pn
R,O(m)).

• If m > 0, then Γ(Pn
R,O(m)) is free of rank

(
m+n
n

)
, generated by the global sections xk.

1



2

• If m < 0, then Γ(Pn
R,O(m)) is a direct sum of

(−m−1
n

)
copies of R[−n]. In particular,

it is zero if −1 > m > −n.

Corollary 6. We have p∗O(0) ' OS and p∗O(m) = 0 for −1 > m > −n.

For each 0 6 i 6 n we have canonical map xi : O(0)→ O(1) (which is induced by the map
xk above with k the vector with ki = 1 and kj = 0 for j 6= i). These maps give rise, by taking
tensor products, to a cubical diagram

P([n])→ Qcoh(Pn
R), J 7→

⊗
j∈J

O(1) ' O(#J),

where P([n]) is the set of subsets of [n], and #J is the cardinality of a subset J ⊂ [n].

Lemma 7. This is a colimit diagram. That is, there is a canonical isomorphism

lim−→
J([n]

O(#J)
∼−→ O(n+ 1)

in Qcoh(Pn
R).

We can tensor this isomorphism with any O(k), k ∈ Z. Since the ∞-category Qcoh(Pn
R) is

stable, this lemma implies that all the sheaves O(m) can be built out of O(0), . . . ,O(n) using
finite colimits and limits. For example, for n = 1 we get squares

O(k) O(k + 1)

O(k + 1) O(k + 2)

for each k ∈ Z, that are cocartesian and cartesian.

Proof of Lemma 7. Using the canonical equivalence

Qcoh(Pn
R)
∼−→ lim←−

∅ 6=I⊂[n]
ModR[MI],

we see that it suffices to check the isomorphism in question after restriction along each of the
open immersions jI : Spec(R[MI])→ Pn

R. But (jI)
∗(xi) : (jI)

∗O(0)→ (jI)
∗O(1) is invertible by

construction whenever i ∈ I, so the claim is clear. �

Lemma 8. Let F ∈ Qcoh(Pn
R) be a connective quasi-coherent sheaf. Then there exists a map

µ :
⊕
α

O(dα)→ F,

with dα ∈ Z, which is surjective on π0.

Proof. For each I ⊂ [n], let M+
I ⊂ Zn+1 be the submonoid of tuples (k0, . . . , kn) such that

ki > 0 for i 6∈ I. Then MI ⊂ M+
I is the subset of tuples satisfying the further condition that

k0 + · · ·+ kn = 0. We have a canonical map

q : U = lim−→
∅ 6=I⊂[n]

Spec(R[M+
I ])→ lim−→

∅6=I⊂[n]
Spec(R[MI]) ' Pn

R.

Note that q∗OU '
⊕

m∈Z O(m) and that q is faithfully flat. Note that U can also be described
as the vanishing locus D(x0, . . . , xn) in X = Spec(R[x0, . . . , xn]). Let j : U ↪→ X denote the
open immersion.

Since X is affine, we can construct a map⊕
α

OX → j∗q
∗(F)
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that is surjective on π0 (for example, take the sum of the maps OX → j∗q
∗(F) corresponding to

each element of π0 of the target). Applying j∗ this induces a map

ρU :
⊕
α

OU → q∗(F)

which is still surjective on π0. By adjunction this corresponds to a map
⊕

α O(0)→ q∗q
∗(F),

where by the projection formula the target is identified with q∗(OU) ⊗ F '
⊕

m∈Z F ⊗ O(m).
Thus we get a collection of maps

ρα : O(0)→
⊕
m∈Z

F ⊗ O(m)

for each α. Since O(0) is a compact object (as it is a perfect complex on the quasi-compact
quasi-separated derived scheme Pn

R), it follows that each ρα factors through a map

ρα : O(0)→
⊕
|m|6cα

F ⊗ O(m),

for some integer cα > 0. Equivalently, we get maps ρα,m : O(−m) → F for each α and all
|m| 6 cα. Let µ denote the induced map

µ : G =
⊕

α,|m|6cα

O(−m)→ F.

It suffices to show that µ is surjective on π0. Since q is faithfully flat it suffices to show this
after applying q∗. This follows from the fact that the map ρU :

⊕
α OU → q∗(F) is surjective on

π0 and factors through q∗(µ) by construction. �

In order to get statements about general projective bundles PS(E), we will use fpqc descent
for quasi-coherent sheaves. The important point for us is that we can check invertibility of a
given morphism in Qcoh(S) fpqc-locally.

Theorem 9. The assignments S 7→ Qcoh(S) and S 7→ Perf(S) satisfy fpqc descent (as presheaves
on the ∞-category of qcqs derived schemes). In particular, for any fpqc covering family (fα :
Sα → S)α, the family of functors (f∗α)α is conservative.

We are now ready to prove Theorem 3.

Proof of Theorem 3. Since O(k) are invertible, the functors −⊗O(k) are invertible for all k ∈ Z.
Therefore we can assume k = 0 in all the statements.

For claim (i) we want to show that the unit map F → p∗p
∗(F) is invertible for all F ∈ Qcoh(S).

Using Theorem 9 and base change for p∗, we can reduce to the case where S = Spec(R) is affine
and E = On+1

S is free (by choosing an affine cover of S such that the restrictions of E are all
free). Now both functors p∗ and p∗ are exact and moreover commute with arbitrary colimits
(the latter since p is quasi-compact), and Qcoh(S) ' ModR is generated by OS under colimits
and finite limits, so that we may assume F = OS. Then it suffices to show that the canonical
map in ModR

Γ(S,OS)→ Γ(S, p∗O(0))

is invertible. This follows from Serre’s theorem (Corollary 6).

For claim (ii), let F,G ∈ Qcoh(S) and consider the mapping space

Maps(p∗(F), p∗(G)⊗ O(−i))

for 1 6 i 6 n. By adjunction and the projection formula, this is identified with the space
Maps(F, p∗(O(−i)) ⊗ G). It suffices to show that p∗(O(−i)) ' 0. This follows from Serre’s
theorem (Corollary 6), after using Zariski descent (Theorem 9) and base change for p∗.
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For claim (iii), let F ∈ Qcoh(PS(E)). We define a sequence G0, . . . ,Gn of objects of
Qcoh(PS(E)), depending on F, such that each Gm is right orthogonal to each of the subcategories
C(0), . . . ,C(m), for each m > 0, and such that we have exact triangles

(0.1) p∗p∗(Gm ⊗ O(1))
counit−−−−→ Gm ⊗ O(1)→ Gm+1.

For m = 0 we define G0 so that it fits into an exact triangle

p∗p∗(F)
counit−−−−→ F → G0.

Since p∗p∗(F) ∈ C(0) it follows that the cofibre G0 is right orthogonal to C(0).

Now suppose that we have defined Gm, 0 6 m < n, so that the exact triangle (0.1) defines
Gm+1 inductively. We need to show that Gm+1 is right orthogonal to all the subcategories
C(0), . . . ,C(m+ 1). For C(0), this follows from the fact that p∗p∗(Gm ⊗ O(1)) is contained in
C(0). For C(i), 0 < i 6 m+ 1, we observe that the left-hand and middle terms of the triangle
(0.1) are both right orthogonal to C(i). Indeed, we have C(0) ⊂ C(i)⊥ by (ii), so this takes
care of the left-hand term. For the middle term Gm ⊗ O(1) the claim follows by the induction
hypothesis.

Now we claim that Gn is zero. Using descent again (Theorem 9), we may assume that
S = Spec(R) and E = O⊕n+1

S (observe that the sequence (G0, . . . ,Gn) is stable under base
change). Then using Lemma 7 we deduce that Gn is right orthogonal to all C(i), i ∈ Z (not just
for 0 6 i 6 n). Using Lemma 8 we can build a map⊕

α

O(mα)[kα]→ Gn

which is surjective on all homotopy groups. But the source of this map belongs to the stable
subcategory generated by the C(i)’s, i ∈ Z, so this map must be null-homotopic. It follows that
Gn ' 0. Working backwords, we deduce that Gn−1 ∈ C(−1), ..., G0 ∈ 〈C(−1), . . . ,C(−n)〉, and
finally that F ∈ 〈C(0),C(−1), . . . ,C(−n)〉 as claimed. �

Using the same ingredients (Theorem 5 and Lemma 8) one can show the following:

Exercise 10. The functor p∗ : Qcoh(Pn
S) → Qcoh(S) preserves almost perfect, resp. perfect

complexes.

This implies that we have a direct image homomorphism

p∗ : K0(Pn
S)→ K0(S).

We can now prove Theorem 1:

Proof of Theorem 1. Let [Fi] ∈ K0(S) such that
∑n
i=0[p∗(Fi) ⊗ O(−i)] = 0. Applying p∗ and

using the projection formula, we get

0 =

n∑
i=0

[Fi ⊗ p∗O(−i)] = [F0],

by Corollary 6. Similarly, applying x 7→ p∗([O(1)] · x) we deduce that [F1] = 0. Continuing in
this way we find that [Fi] = 0 for all i, which shows that the map ϕ :

⊕n
i=0 K0(S)→ K0(PS(E))

is injective. For surjectivity, use the sequence G0, . . . ,Gn and the exact triangles constructed
in the proof of Theorem 3, to write any [F] ∈ K0(PS(E)) as a sum of elements in the image of
ϕ. �


