
Lecture 0
Introduction

Question 1 (Intersection theory). Let X be a nonsingular algebraic variety over a field k. Let V
and W be irreducible closed subvarieties of X. How can we describe the intersection V∩W ⊂ X?

Example 2 (Bézout). Let X = P2
C and V and W be smooth curves of degrees m and n,

respectively. Suppose that V and W intersect properly (in a finite number of points). Then the
number of intersection points is at most mn. This is an equality if and only if the intersection is
transverse.

In the transverse case, we can give a “cohomological” reformulation of Bézout’s theorem as
follows.

Observation 3. Consider the Chow ring of algebraic cycles CH∗(P2
C,Z). The curves V and

W have fundamental classes [V], [W] ∈ CH∗(P2
C,Z). If V and W intersect transversally, then

Bézout’s formula can be restated as the equality

[V] · [W] = [V ∩W]

in CH2(P2
C,Z) ≈ Z, where · denotes the intersection product.

The equality above still holds in the non-transverse case as long as we “count with mul-
tiplicities”. That is, intersection multiplicities need to be taken into account when defining
the fundamental class [V ∩W]. In the above example, the correct multiplicity number can be
recovered by considering the canonical scheme structure on V ∩W. In general, more than just
the scheme structure needs to be taken into account (even in the case X = P3

C).

Theorem 4 (Serre). Let X be a nonsingular variety over a field k. Let V and W be irreducible
closed subvarieties of X that intersect properly (so that dim(V)+dim(W) = dim(X)+dim(V∩W)).
Then for any generic point x ∈ V ∩W, the intersection multiplicity of V and W at x is given by
the Euler characteristic ∑

i

(−1)i · lengthOX,x
Tor

OX,x

i (OV,x,OW,x).

In the example above, we could have replaced the Chow ring with any reasonable cohomology
theory (e.g. singular cohomology). It turns out that if we work with algebraic K-theory instead,
intersection products are easy to define and are very closely related to Serre’s formula for the
intersection number.

Definition 5. Given a locally noetherian scheme X, let K0(X) = K0(Perf(X)) denote the
Grothendieck group of perfect complexes1 on X. This is the free abelian group generated by
(isomorphism classes of) perfect complexes on X, modulo the relation [E] = [E′] + [E′′] for any
exact triangle E′ → E→ E′′.

Similarly, let G0(X) = K0(Coh(X)) denote the Grothendieck group of coherent sheaves on
X. This is the free abelian group generated by (isomorphism classes of) coherent sheaves on X,
modulo the relation [E] = [E′] + [E′′] for any exact sequence 0→ E′ → E→ E′′ → 0.

When X is regular (nonsingular), we can identify these two groups:

Theorem 6 (Poincaré duality). For any regular scheme X, there is a canonical isomorphism

K0(X)
∼−→ G0(X)

which is contravariantly functorial in X. It is given by the assignment [E] 7→
∑
i(−1)i[Hi(E)].

1A perfect complex is a bounded complex of vector bundles (locally and up to quasi-isomorphism). If X is
quasi-projective, then it is possible to simply work with vector bundles instead of perfect complexes.
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The group K0(X) admits a multiplication given by the derived tensor product of perfect
complexes:

[E] · [F] = [E⊗L
OX

F].

If X is regular this induces a product on G0(X) which can be described as

[E] · [F] =
∑
i

(−1)i[TorOX
i (E,F)].

For example, given closed subschemes V and W, we can consider the classes of OV and OW in
G0(X), and their product recovers Serre’s formula (after passing to stalks).

Furthermore, K-theory is closely related to the Chow ring via a natural filtration.

Construction 7. The coniveau filtration2 on G0(X) is defined as follows: for any integer n > 0,
FnconivG0(X) is the subgroup of G0(X) generated by classes [E] where E is a coherent sheaf whose
support is of codimension > n.

The following is one corollary of (one form of) the Grothendieck–Riemann–Roch theorem.

Theorem 8. For any noetherian scheme X, there is a canonical map

CHk(X)→ Grkconiv(G0(X))

given by the assignment [Z] 7→ [OZ], which is surjective for each integer k. Here the right-hand
side denotes the associated graded pieces of the coniveau filtration. Moreover, it induces an
isomorphism

CHk(X)Q → Grkconiv(G0(X)Q)

with rational coefficients.

We might hope to use this identification to understand intersection products at least rationally.
For this, we would also need to know that the coniveau filtration is multiplicative (i.e. compatible
with the multiplication in the evident way).

Theorem 9. Let X be a smooth quasi-projective variety over a field k. Then the coniveau
filtration is multiplicative.

Grothendieck proved the above theorem in the quasi-projective case by using Chow’s moving
lemma. Over more general schemes (say regular noetherian), this is still an open conjecture.
In order to circumvent this issue, Grothendieck defined another filtration on K0(X) which is
tautologically multiplicative.

Construction 10. Let λi : K0(X) → K0(X) denote the λ-operations [E] 7→ [Λi(E)]. Let
γi : K0(X)→ K0(X) denote the operations x 7→ λn(x+ (n− 1)[OX]).

Define the γ-filtration F∗γ(K0(X)) as follows:

(i) Define F1
γ(K0(X)) as the subgroup generated by classes of virtual rank zero (i.e. classes

[E]− [F] where E and F are locally free of the same rank).

(ii) For each x ∈ F1
γ(K0(X)), require that γi(x) ∈ Fiγ(K0(X)).

(iii) Require that the filtration is multiplicative, i.e. Fiγ · Fjγ ⊂ Fi+jγ .

One can define “Chern classes” ck(E) = γk([E]− rk(E)) and therefore a Chern character map

ch : K0(X)→ Gr∗γ(K0(X)).

2Also known as the codimension or topological filtration
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Theorem 11. Let X be a regular noetherian scheme. Then there is a canonical isomorphism

Gr∗coniv(K0(X)Q)
∼−→ Gr∗γ(K0(X)Q).

Furthermore, there is a canonical isomorphism

CHk(X)Q
∼−→ Grkγ(K0(X))

for each k, given by the assignment [Z] 7→ chk([OY]), where chk denotes the kth graded component
of the Chern character.

In particular, it follows that the coniveau filtration is multiplicative rationally. In any case,
we can “do intersection theory” rationally, completely independently of the theory of algebraic
cycles, instead working with K-theory and the γ-filtration. A crucial ingredient in all this is the
following, which describes the (failure of) covariant functoriality of the Chern character:

Theorem 12 (Grothendieck–Riemann–Roch). Let i : Z→ X be a regular closed immersion of
quasi-projective noetherian schemes. Then the following square commutes:

K0(Z) K0(X)

Grγ(K0(Z)Q) Grγ(K0(X)Q)

i∗

ch(−)·Td(−Ni) ch

i∗

Our goal in this course is to give a proof of the above theorem in the more general setting where
the schemes are allowed to be derived. The motivation comes again from Serre’s intersection
formula: given a regular scheme X, say X = Spec(A) for simplicity, and closed subvarieties
V = Spec(A/I) and W = Spec(A/J), we would like to enhance V∩W into some more structured

geometric object that encodes the data of the Tor groups TorAi (A/I,A/J) (and hence the correct
intersection multiplicity numbers). This means that we want to be able to make sense of the
“Zariski spectrum” of the derived tensor product A/I⊗L

A A/J. In particular, we want to view
A/I ⊗L

A A/J as some sort of generalized commutative ring (just as the usual tensor product
A/I⊗A A/J is a commutative ring).

Quillen observed that the theory of derived functors works equally well in non-abelian settings
(like the non-abelian category of commutative rings), if we work with simplicial objects instead
of chain complexes. For the moment we will ignore the difference and think of simplicial
commutative rings roughly as “chain complexes of abelian groups with multiplicative structures”.
The main point for this discussion is that the construction A/I⊗L

A A/J can be naturally viewed
as a simplicial commutative ring.

Quasi-Definition 13. A derived scheme X is a pair (Xcl,OX), where Xcl is a classical scheme,
and OX is a sheaf of simplicial commutative rings on Xcl such that H0(OX) ≈ OXcl

.

We refer to Xcl as the “underlying classical scheme” of X. We think of X as an infinitesimal
thickening of Xcl in the same way that Xcl is a thickening of its underlying reduced scheme Xred.
Thanks to the work of Lurie and Toën–Vezzosi, most of the language from classical scheme
theory also makes sense in the derived setting.

Example 14. Any classical scheme X is a derived scheme, with “discrete” structure sheaf.

Example 15. Given any simplicial commutative ring A, there is a naturally associated affine
derived scheme Spec(A).

Example 16. Let X be a scheme and V,W closed subschemes. Then there is a derived scheme
V×hX W, called the derived fibred product, whose underlying classical scheme is the usual fibred
product V×X W. Its structure sheaf encode the Tor groups appearing in Serre’s intersection
formula. In particular, it coincides with the usual fibred product if and only if the V and W
intersect transversely.
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Example 17. Let X = Spec(A) be an affine scheme and f ∈ A an element. Then the Koszul

complex 0 → A
f−→ A → 0 can be viewed as a simplicial commutative ring, which we denote

A//(f). In particular there is a morphism of derived schemes Spec(A//(f))→ Spec(A), which
can be viewed as a thickening of the closed immersion Spec(A/f)→ Spec(A). Recall that if f is
a non-zero-divisor, then the Koszul complex is just a resolution of A/f ; in other words, there is
a quasi-isomorphism A//(f) ≈ A/f , and in particular there is no difference in this case between
Spec(A//(f)) and Spec(A/f).

However, if f is a non-zero-divisor, then the morphism Spec(A//(f)) → Spec(A) has more
structure than the morphism of underlying classical schemes Spec(A/f) → Spec(A). For
example, the former “remembers” that it is cut out by a single equation.

In fact, there is a version of the construction A//(f) with many elements, that we denote
A//(f1, . . . , fn). If (f1, . . . , fn) form a regular sequence, then this is quasi-isomorphic to the
usual quotient A/(f1, . . . , fn). Moreover, this construction also makes sense when A is itself
a simplicial commutative ring (and f1, . . . , fn are elements in the ordinary commutative ring
H0(A)). This leads to the following derived generalization of the notion of “regular closed
immersion”:

Definition 18. Let i : Z→ X be a closed immersion of derived schemes. We say that i is quasi-
smooth (of virtual codimension n) if it is locally of the form Spec(A//(f1, . . . , fn))→ Spec(A).

A general principle that we wish to illustrate throughout the course is that in many ways,
quasi-smooth closed immersions are just as well-behaved as regular closed immersions, and
furthermore that it is often necessary to take quasi-smooth morphisms into account in order to
obtain a complete picture of a given situation.

Here is an example. Let Z→ X be a regular closed immersion of schemes, and let π : X̃→ X
denote the blow-up of X in Z. Recall that π induces an isomorphism away from Z, and over
Z the fibre π−1(Z) is the projectivized normal bundle P(NZ/X). Recall also that π has the
following characterization: for any morphism of schemes f : S→ X such that the schematic fibre
f−1(Z)→ S is an effective Cartier divisor (= regular immersion of codimension 1), there exists

a unique morphism f̃ : S→ X̃ lifting f . If we take quasi-smooth morphisms into account, we
get the following more complete characterization:

Theorem 19. With notation as above, there is a bijective correspondence between:

(1) Morphisms f̃ : S→ X̃ lifting f .

(2) Commutative squares

D S

Z X

f

where D → S is a quasi-smooth closed immersion of virtual codimension 1, with D a derived
thickening of f−1(Z) (i.e. Dcl ≈ f−1(Z)), such that the induced map on conormal sheaves
NZ/X → ND/S is surjective.


